

Revision 1.1 April 6
th

, 2011 1

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Media Transfer Protocol

Revision 1.1

April 6

th
, 2011

Revision 1.1 April 6
th

, 2011 2

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Copyright © 2011, USB Implementers Forum, Inc.

All rights reserved.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR

INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM

ALL LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS,

RELATING TO IMPLEMENTATION OF INFORMATION IN THIS

SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO

DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL

NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS” AND WITH NO WARRANTIES,

EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES

ARE EXPRESSLY DISCLAIMED. NO WARRANTY OF MERCHANTABILITY, NO

WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY

PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY

PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER

FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST

PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL,

CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER

CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT

OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD

ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Please send comments via electronic mail to mtp-chair@usb.org

mailto:mtp-chair@usb.org

Revision 1.1 April 6
th

, 2011 3

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Table of Contents
Table of Contents .. 3

1 Introduction ... 15

1.1 Purpose .. 15

1.2 MTP Device Model ... 15

1.3 MTP Object Model .. 15

1.4 Scope ... 16

1.5 PTP Compatibility ... 16

2 Transport Requirements .. 17

2.1 Disconnection Events .. 17

2.2 Error-Free Data Transmission ... 17

2.3 Asynchronous Events .. 17

2.4 Device Discovery and Enumeration .. 17

2.5 Security and Authentication .. 17

2.6 Transport Independence .. 17

2.7 MTP Device Enumeration ... 18

3 Normative Reference ... 19

3.1 Data Formatting ... 19

3.1.1 Multi-byte Data ... 19

3.1.2 Bit Field Format .. 19

3.2 Simple Types ... 19

3.2.1 Simple Type Summary .. 19

3.2.2 Arrays .. 20

3.2.2.1 Array Definition .. 20

3.2.3 Strings ... 21

3.2.3.1 String Definition .. 21

3.2.4 Decimal Types ... 21

3.2.5 DateTime ... 21

3.3 Datacodes .. 22

3.3.1 Datacode Summary ... 22

3.4 Object Handles .. 23

3.4.1 Assigning Object Handles ... 23

3.5 Object Formats .. 24

3.5.1 Object Format Versions ... 24

3.6 Associations .. 24

3.6.1 Association Types ... 25

3.6.2 Association Type Summary ... 25

3.6.2.1 Generic Folder ... 25

3.6.2.2 Album .. 26

3.6.2.3 Time Sequence .. 26

3.6.2.4 Horizontal Panoramic .. 26

3.6.2.5 Vertical Panoramic .. 26

3.6.2.6 2D Panoramic .. 26

Revision 1.1 April 6
th

, 2011 4

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3.6.2.7 Ancillary Data ... 26

3.6.3 Associations as File System Folders .. 26

3.6.4 Associations and Object References .. 27

3.7 MTP Extensibility ... 27

3.7.1 Identifying Vendor Extension Support .. 27

3.7.2 Linking to Extension Documentation and Specification 28

3.7.3 Allowed Datacode Ranges ... 28

4 Communication Model .. 29

4.1 Initiator/Responder Roles .. 29

4.2 Unidirectional Data Flow .. 29

4.3 MTP Transactions ... 29

4.3.1 Transaction Synchronicity ... 30

4.3.2 Transaction Phases .. 30

4.3.3 Transaction IDs ... 30

4.4 Sessions ... 30

4.4.1 Opening and Closing Sessions ... 31

4.4.2 Choosing Session IDs .. 31

4.5 Operations ... 32

4.5.1 Operation Datacodes.. 32

4.5.2 Operation Dataset .. 32

4.5.3 Operation Parameters .. 33

4.5.3.1 Operation Code .. 33

4.5.3.2 SessionID ... 33

4.5.3.3 TransactionID .. 33

4.5.3.4 Parameter n .. 33

4.6 Data Phases ... 33

4.7 Responses .. 34

4.7.1 Response Datacodes .. 34

4.7.2 Response Dataset ... 34

4.7.3 Response Parameters ... 35

4.7.3.1 ResponseCode ... 35

4.7.3.2 SessionID ... 35

4.7.3.3 TransactionID .. 35

4.7.3.4 Parameter n .. 35

4.8 Events .. 36

4.8.1 Event Datacodes .. 36

4.8.2 Event Dataset ... 36

4.8.3 Event Parameters ... 37

4.8.3.1 Event Code .. 37

4.8.3.2 SessionID ... 37

4.8.3.3 TransactionID .. 37

4.8.3.4 Parameter n .. 37

4.8.4 Asynchronous Event Support .. 37

4.8.4.1 Interleaving Events .. 37

Revision 1.1 April 6
th

, 2011 5

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5 Device Model .. 39

5.1 Device Representation ... 39

5.1.1 DeviceInfo Dataset .. 39

5.1.1.1 Standard Version ... 40

5.1.1.2 MTP Vendor ExtensionID ... 40

5.1.1.3 MTP Version ... 40

5.1.1.4 MTP Extensions .. 40

5.1.1.5 Functional Mode .. 40

5.1.1.6 Operations Supported .. 41

5.1.1.7 Events Supported ... 41

5.1.1.8 Device Properties Supported .. 41

5.1.1.9 Capture Formats .. 41

5.1.1.10 Playback Formats ... 41

5.1.1.11 Manufacturer ... 41

5.1.1.12 Model .. 41

5.1.1.13 Device Version .. 41

5.1.1.14 Serial Number .. 42

5.1.2 Device Properties... 42

5.1.2.1 Device Property Describing Dataset .. 42

5.1.2.2 Retrieving Device Properties ... 44

5.1.2.3 Setting Device Properties ... 44

5.1.2.4 Device Properties as Device Control ... 45

5.2 Storage Representation .. 45

5.2.1 Storage IDs .. 45

5.2.2 StorageInfo Dataset Description .. 46

5.2.2.1 Storage Type .. 46

5.2.2.2 Filesystem Type ... 47

5.2.2.3 Access Capability .. 47

5.2.2.4 Max Capacity ... 47

5.2.2.5 Free Space In Bytes ... 48

5.2.2.6 Free Space In Objects .. 48

5.2.2.7 Storage Description ... 48

5.2.2.8 Volume Identifier .. 48

5.2.3 Defining Access Restrictions ... 48

5.3 Content Representation.. 48

5.3.1 ObjectInfo Dataset Description ... 49

5.3.1.1 StorageID ... 50

5.3.1.2 ObjectFormat ... 50

5.3.1.3 Protection Status .. 50

5.3.1.4 Object Compressed Size .. 52

5.3.1.5 *Thumb Format, *Thumb Compressed Size, *Thumb Pix Width,

*Thumb Pix Height ... 52

5.3.1.6 Image Pix Width .. 53

5.3.1.7 Image Pix Height ... 53

Revision 1.1 April 6
th

, 2011 6

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.1.8 Image Bit Depth... 53

5.3.1.9 Parent Object ... 53

5.3.1.10 Association Type ... 53

5.3.1.11 AssociationDesc .. 53

5.3.1.12 Sequence Number .. 53

5.3.1.13 Filename .. 54

5.3.1.14 Date Created .. 54

5.3.1.15 Date Modified .. 54

5.3.1.16 Keywords ... 54

5.3.2 Object Properties ... 54

5.3.2.1 Requirements for Object Property Support .. 55

5.3.2.2 Identifying Object Property Support .. 55

5.3.2.3 Defining Object Properties .. 55

5.3.2.4 Retrieving Object Properties .. 59

5.3.2.5 Setting Object Properties ... 59

5.3.2.6 Required Object Properties .. 60

5.3.2.7 Optimizing Object Properties .. 60

5.3.2.8 Representative Samples ... 61

5.3.2.9 Example of Object Properties in Use ... 62

5.3.2.10 Summary ... 62

5.3.3 Object References .. 63

5.3.3.1 Object Reference Structure .. 63

5.3.3.2 Setting Object References .. 63

5.3.3.3 Retrieving Object References .. 64

5.3.3.4 Identifying Support for Object References .. 64

5.3.3.5 References are Unidirectional .. 64

5.3.3.6 The Meaning of Object References Is Contextual 64

5.3.3.7 Reference Maintenance .. 64

5.3.4 Basic Object Transfer .. 65

5.3.4.1 Sent Object Placement ... 65

Appendix A – Object Formats ... 67

A.1 Object Format Summary Table ... 67

Appendix B – Object Properties .. 72

B.1 Object Property Summary Table ... 72

B.2 Object Property Descriptions .. 76

B.2.1 StorageID ... 76

B.2.2 Object Format .. 76

B.2.3 Protection Status .. 76

B.2.4 Object Size ... 78

B.2.5 Association Type ... 79

B.2.6 Association Desc ... 80

B.2.7 Object File Name ... 81

B.2.8 Date Created .. 82

B.2.9 Date Modified .. 82

Revision 1.1 April 6
th

, 2011 7

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.10 Keywords ... 83

B.2.11 Parent Object ... 83

B.2.12 Allowed Folder Contents ... 84

B.2.13 Hidden ... 85

B.2.14 System Object .. 86

B.2.15 Persistent Unique Object Identifier .. 87

B.2.16 SyncID ... 87

B.2.17 Property Bag .. 88

B.2.18 Name ... 88

B.2.19 Created By ... 89

B.2.20 Artist .. 89

B.2.21 Date Authored .. 90

B.2.22 Description ... 90

B.2.23 URL Reference .. 91

B.2.24 Language-Locale ... 92

B.2.25 Copyright Information ... 92

B.2.26 Source .. 93

B.2.27 Origin Location .. 94

B.2.28 Date Added .. 95

B.2.29 Non-Consumable ... 95

B.2.30 Corrupt/Unplayable ... 96

B.2.31 ProducerSerialNumber ... 96

B.2.32 Representative Sample Format .. 97

B.2.33 Representative Sample Size ... 97

B.2.34 Representative Sample Height ... 98

B.2.35 Representative Sample Width .. 98

B.2.36 Representative Sample Duration .. 99

B.2.37 Representative Sample Data .. 99

B.2.38 Width ... 100

B.2.39 Height .. 101

B.2.40 Duration ... 102

B.2.41 Rating .. 102

B.2.42 Track .. 103

B.2.43 Genre ... 103

B.2.44 Credits ... 104

B.2.45 Lyrics ... 104

B.2.46 Subscription Content ID .. 105

B.2.47 Produced By .. 105

B.2.48 Use Count .. 106

B.2.49 Skip Count ... 106

B.2.50 Last Accessed .. 107

B.2.51 Parental Rating ... 107

B.2.52 Meta Genre .. 108

B.2.53 Composer ... 109

Revision 1.1 April 6
th

, 2011 8

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.54 Effective Rating ... 109

B.2.55 Subtitle ... 110

B.2.56 Original Release Date .. 110

B.2.57 Album Name .. 111

B.2.58 Album Artist .. 111

B.2.59 Mood ... 112

B.2.60 DRM Status ... 112

B.2.61 Sub Description ... 113

B.2.62 Is Cropped ... 113

B.2.63 Is Colour Corrected .. 114

B.2.64 Image Bit Depth ... 114

B.2.65 Fnumber ... 115

B.2.66 Exposure Time ... 115

B.2.67 Exposure Index .. 116

B.2.68 Total BitRate .. 117

B.2.69 Bitrate Type ... 118

B.2.70 Sample Rate ... 119

B.2.71 Number Of Channels ... 120

B.2.72 Audio BitDepth .. 121

B.2.73 Scan Type .. 122

B.2.74 Audio WAVE Codec ... 123

B.2.75 Audio BitRate .. 123

B.2.76 Video FourCC Codec ... 124

B.2.77 Video BitRate .. 124

B.2.78 Frames Per Thousand Seconds ... 125

B.2.79 KeyFrame Distance .. 125

B.2.80 Buffer Size ... 126

B.2.81 Encoding Quality ... 126

B.2.82 Encoding Profile .. 127

B.2.83 Display Name .. 127

B.2.84 Body Text .. 128

B.2.85 Subject ... 128

B.2.86 Priority ... 129

B.2.87 Given Name ... 130

B.2.88 Middle Names .. 130

B.2.89 Family Name ... 131

B.2.90 Prefix ... 131

B.2.91 Suffix ... 132

B.2.92 Phonetic Given Name .. 132

B.2.93 Phonetic Family Name ... 133

B.2.94 Email Primary .. 134

B.2.95 Email Personal 1 .. 135

B.2.96 Email Personal 2 .. 136

B.2.97 Email Business 1 .. 137

Revision 1.1 April 6
th

, 2011 9

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.98 Email Business 2 .. 138

B.2.99 Email Others .. 139

B.2.100 Phone Number Primary .. 140

B.2.101 Phone Number Personal ... 140

B.2.102 Phone Number Personal 2 .. 141

B.2.103 Phone Number Business .. 141

B.2.104 Phone Number Business 2 ... 142

B.2.105 Phone Number Mobile ... 142

B.2.106 Phone Number Mobile 2 .. 143

B.2.107 Fax Number Primary .. 143

B.2.108 Fax Number Personal ... 144

B.2.109 Fax Number Business .. 144

B.2.110 Pager Number .. 145

B.2.111 Phone Number Others .. 145

B.2.112 Primary Web Address .. 146

B.2.113 Personal Web Address ... 147

B.2.114 Business Web Address ... 148

B.2.115 Instant Messenger Address .. 149

B.2.116 Instant Messenger Address 2 ... 150

B.2.117 Instant Messenger Address 3 ... 151

B.2.118 Postal Address Personal Full .. 151

B.2.119 Postal Address Personal Line 1 .. 152

B.2.120 Postal Address Personal Line 2 .. 152

B.2.121 Postal Address Personal City ... 153

B.2.122 Postal Address Personal Region ... 153

B.2.123 Postal Address Personal Postal Code ... 153

B.2.124 Postal Address Personal Country ... 154

B.2.125 Postal Address Business Full ... 154

B.2.126 Postal Address Business Line 1 ... 155

B.2.127 Postal Address Business Line 2 ... 155

B.2.128 Postal Address Business City ... 156

B.2.129 Postal Address Business Region .. 156

B.2.130 Postal Address Business Postal Code ... 156

B.2.131 Postal Address Business Country ... 157

B.2.132 Postal Address Other Full .. 157

B.2.133 Postal Address Other Line 1 .. 158

B.2.134 Postal Address Other Line 2 .. 158

B.2.135 Postal Address Other City .. 159

B.2.136 Postal Address Other Region ... 159

B.2.137 Postal Address Other Postal Code .. 159

B.2.138 Postal Address Other Country .. 160

B.2.139 Organization Name .. 160

B.2.140 Phonetic Organization Name ... 161

B.2.141 Role ... 161

Revision 1.1 April 6
th

, 2011 10

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.142 Birthdate .. 162

B.2.143 Message To .. 162

B.2.144 Message CC ... 163

B.2.145 Message BCC .. 164

B.2.146 Message Read .. 164

B.2.147 Message Received Time .. 165

B.2.148 Message Sender ... 165

B.2.149 Activity Begin Time .. 166

B.2.150 Activity End Time ... 166

B.2.151 Activity Location ... 167

B.2.152 Activity Required Attendees .. 167

B.2.153 Activity Optional Attendees ... 168

B.2.154 Activity Resources ... 168

B.2.155 Activity Accepted .. 169

B.2.156 Activity Tentative .. 169

B.2.157 Activity Declined ... 170

B.2.158 Activity Reminder Time .. 170

B.2.159 Activity Owner .. 171

B.2.160 Activity Status ... 171

B.2.161 Owner .. 172

B.2.162 Editor ... 172

B.2.163 Webmaster ... 173

B.2.164 URL Source ... 173

B.2.165 URL Destination .. 174

B.2.166 Time Bookmark ... 174

B.2.167 Object Bookmark ... 175

B.2.168 Byte Bookmark .. 175

B.2.169 Last Build Date .. 176

B.2.170 Time to Live .. 176

B.2.171 Media GUID .. 177

Appendix C – Device Properties ... 179

C.1 Device Property Summary Table .. 179

C.2 Device Property Descriptions ... 180

C.2.1 Undefined .. 180

C.2.2 Battery Level ... 180

C.2.3 Functional Mode .. 181

C.2.4 Image Size ... 182

C.2.5 Compression Setting .. 183

C.2.6 White Balance .. 184

C.2.7 RGB Gain .. 185

C.2.8 F-Number .. 186

C.2.9 Focal Length .. 186

C.2.10 Focus Distance ... 187

C.2.11 Focus Mode ... 187

Revision 1.1 April 6
th

, 2011 11

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.12 Exposure Metering Mode... 188

C.2.13 Flash Mode .. 189

C.2.14 Exposure Time ... 190

C.2.15 Exposure Program Mode ... 191

C.2.16 Exposure Index .. 192

C.2.17 Exposure Bias Compensation .. 192

C.2.18 DateTime ... 193

C.2.19 Capture Delay .. 194

C.2.20 Still Capture Mode ... 195

C.2.21 Contrast .. 195

C.2.22 Sharpness ... 196

C.2.23 Digital Zoom .. 196

C.2.24 Effect Mode ... 197

C.2.25 Burst Number .. 197

C.2.26 Burst Interval ... 198

C.2.27 Timelapse Number ... 198

C.2.28 Timelapse Interval ... 199

C.2.29 Focus Metering Mode .. 199

C.2.30 Upload URL .. 200

C.2.31 Artist .. 200

C.2.32 Copyright Info ... 201

C.2.33 Synchronization Partner ... 201

C.2.34 Device Friendly Name ... 202

C.2.35 Volume .. 202

C.2.36 SupportedFormatsOrdered ... 203

C.2.37 DeviceIcon ... 203

C.2.38 Playback Rate .. 204

C.2.39 Playback Object ... 205

C.2.40 Playback Container Index .. 206

C.2.41 Playback Position ... 206

C.2.42 Session Initiator Version Info .. 207

C.2.43 Perceived Device Type .. 208

Appendix D – Operations .. 209

D.1 Operation Summary Table .. 209

D.2 Operation Descriptions ... 210

D.2.1 GetDeviceInfo ... 210

D.2.2 OpenSession .. 211

D.2.3 CloseSession .. 212

D.2.4 GetStorageIDs ... 213

D.2.5 GetStorageInfo .. 214

D.2.6 GetNumObjects ... 215

D.2.7 GetObjectHandles .. 217

D.2.8 GetObjectInfo .. 218

D.2.9 GetObject .. 219

Revision 1.1 April 6
th

, 2011 12

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.10 GetThumb .. 220

D.2.11 DeleteObject .. 221

D.2.12 SendObjectInfo .. 223

D.2.13 SendObject .. 225

D.2.14 InitiateCapture ... 226

D.2.15 FormatStore ... 228

D.2.16 ResetDevice ... 229

D.2.17 SelfTest .. 230

D.2.18 SetObjectProtection ... 231

D.2.19 PowerDown ... 232

D.2.20 GetDevicePropDesc ... 233

D.2.21 GetDevicePropValue ... 234

D.2.22 SetDevicePropValue .. 235

D.2.23 ResetDevicePropValue .. 236

D.2.24 TerminateOpenCapture .. 237

D.2.25 MoveObject ... 238

D.2.26 CopyObject .. 239

D.2.27 GetPartialObject .. 240

D.2.28 InitiateOpenCapture ... 241

D.2.29 GetObjectPropsSupported ... 243

D.2.30 GetObjectPropDesc ... 244

D.2.31 GetObjectPropValue .. 245

D.2.32 SetObjectPropValue .. 246

D.2.33 GetObjectReferences ... 247

D.2.34 SetObjectReferences .. 248

D.2.35 Skip ... 249

Appendix E – Enhanced Operations .. 250

E.1 Enhanced Operation Summary Table .. 250

E.2 Enhanced Operation Descriptions ... 251

E.2.1 GetObjectPropList ... 251

E.2.1.1 ObjectPropList Dataset Table: .. 253

E.2.2 SetObjectPropList .. 254

E.2.3 GetInterdependentPropDesc ... 255

E.2.3.1 InterDependentPropList Dataset Table .. 255

E.2.4 SendObjectPropList ... 258

Appendix F – Responses ... 262

F.1 Response Summary Table ... 262

F.2 Response Descriptions .. 264

F.2.1 Undefined ... 264

F.2.2 OK .. 264

F.2.3 General_Error ... 264

F.2.4 Session_Not_Open ... 264

F.2.5 Invalid_TransactionID ... 264

F.2.6 Operation_Not_Supported .. 264

Revision 1.1 April 6
th

, 2011 13

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.7 Parameter_Not_Supported ... 265

F.2.8 Incomplete_Transfer .. 265

F.2.9 Invalid_StorageID .. 265

F.2.10 Invalid_ObjectHandle .. 265

F.2.11 DeviceProp_Not_Supported ... 265

F.2.12 Invalid_ObjectFormatCode .. 266

F.2.13 Store_Full ... 266

F.2.14 Object_WriteProtected ... 266

F.2.15 Store_Read-Only .. 266

F.2.16 Access_Denied ... 266

F.2.17 No_Thumbnail_Present .. 266

F.2.18 SelfTest_Failed .. 267

F.2.19 Partial_Deletion .. 267

F.2.20 Store_Not_Available .. 267

F.2.21 Specification_By_Format_Unsupported... 267

F.2.22 No_Valid_ObjectInfo ... 267

F.2.23 Invalid_Code_Format ... 268

F.2.24 Unknown_Vendor_Code .. 268

F.2.25 Capture_Already_Terminated .. 268

F.2.26 Device_Busy .. 268

F.2.27 Invalid_ParentObject .. 268

F.2.28 Invalid_DeviceProp_Format .. 269

F.2.29 Invalid_DeviceProp_Value .. 269

F.2.30 Invalid_Parameter .. 269

F.2.31 Session_Already_Open .. 269

F.2.32 Transaction_Cancelled ... 269

F.2.33 Specification_of_Destination_Unsupported ... 270

F.2.34 Invalid_ObjectPropCode .. 270

F.2.35 Invalid_ObjectProp_Format ... 270

F.2.36 Invalid_ObjectProp_Value ... 270

F.2.37 Invalid_ObjectReference .. 270

F.2.38 Invalid_Dataset .. 271

F.2.39 Specification_By_Group_Unsupported .. 271

F.2.40 Specification_By_Depth_Unsupported .. 271

F.2.41 Object_Too_Large ... 271

F.2.42 ObjectProp_Not_Supported ... 272

F.2.43 Group_Not_Supported ... 272

Appendix G – Events .. 273

G.1 Event Summary Table .. 273

G.2 Event Descriptions ... 274

G.2.1 Undefined .. 274

G.2.2 CancelTransaction ... 274

G.2.3 ObjectAdded .. 274

G.2.4 ObjectRemoved ... 275

Revision 1.1 April 6
th

, 2011 14

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.5 StoreAdded .. 275

G.2.6 StoreRemoved ... 276

G.2.7 DevicePropChanged .. 276

G.2.8 ObjectInfoChanged .. 276

G.2.9 DeviceInfoChanged ... 277

G.2.10 RequestObjectTransfer .. 277

G.2.11 StoreFull .. 277

G.2.12 DeviceReset ... 277

G.2.13 StorageInfoChanged .. 278

G.2.14 CaptureComplete ... 278

G.2.15 UnreportedStatus ... 278

G.2.16 ObjectPropChanged ... 279

G.2.17 ObjectPropDescChanged ... 279

G.2.18 ObjectReferencesChanged ... 279

Appendix H – USB Optimizations .. 280

Sending >4GB Binary Objects .. 280

Sending a >4GB Object with a SendObject Operation .. 281

Retrieving a >4GB Object with a GetObject Operation ... 281

Splitting the Header and Data during the Data Phase .. 281

Revision 1.1 April 6
th

, 2011 15

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

1 Introduction
Media Transfer Protocol, or MTP, is a protocol designed for content exchange with and

command and control of transient storage devices. It was been developed as an extension

to PTP, or Picture Transfer Protocol, and is targeted primarily at Digital Still Cameras,

Portable Media Players and Cellular phones.

1.1 Purpose

The primary purpose of this protocol is to facilitate communication between media

devices that have transient connectivity and significant storage capacity. This includes the

exchange of binary objects and the enumeration of the contents of that connected device.

The secondary purpose of this protocol is to enable command and control of the

connected device. This includes the remote invocation of device functionality, monitoring

of device-initiated events, and the reading and setting of device properties.

1.2 MTP Device Model

MTP devices may be loosely defined as devices with storage that consume or produce

media objects in a binary format, which have intermittent connections with other media

devices, and which fulfill their primary purpose while not connected to another device.

Devices generally act primarily as either media consumers or media producers, although

this line is becoming increasingly blurred. Some examples of common portable media

devices are: digital cameras (both still and video), portable audio players, and cellular

phones.

1.3 MTP Object Model

The term "media" in "Media Transfer Protocol" is used to identify any binary data, and is

not restricted to audio/video formats to which it is commonly applied. Some examples of

non-audio/video objects include contacts, programs, scheduled events and text files.

Media objects are required to be represented as atomic binary objects during transfer, but

are not required to be stored in the same format or structure on the device. Objects may

be created on-demand, as long as they are accurately represented during content

enumeration.

MTP objects consist of not only the binary content of the file, but also the descriptive

metadata and references. MTP is designed such that objects can be recognized through

the mechanisms provided in the protocol without requiring an understanding of the binary

format of the file itself.

The combination of the binary file, its descriptive metadata and any intra-object

references together is referred to in MTP as an object.

Revision 1.1 April 6
th

, 2011 16

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

1.4 Scope

This specification is intended to define the USB implementation of MTP in a way that is

agnostic to both device type and OS. Certain operating systems or device classes may

require a particular subset of MTP to enable their minimal scenarios; it is strongly

suggested that implementers investigate the intended usage scenarios to determine if any

such requirements exist.

1.5 PTP Compatibility

This protocol is implemented as an extension of the existing Picture Transfer Protocol, as

defined by the ISO 15740 specification

(http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37445&

ICS1=37&ICS2=40&ICS3=99). MTP is intended to co-exist with and not overlap PTP

functionality, and it is hoped that devices will be developed to comply fully with the PTP

specification where possible to leverage the existing base of PTP-enabled devices and

applications.

MTP has been implemented using the defined vendor extensibility mechanism of PTP

using the MTP Vendor Extension ID. By implementing MTP in this way, compatibility

of devices with PTP is preserved. However, in rare cases, optional modifications to the

core protocol have been included to enhance the functionality of connected devices.

These are clearly identified in this specification, and it is the responsibility of

implementers of this protocol to determine whether PTP-compatibility is desirable, and if

so, to implement this protocol in such a manner as to be compatible with PTP.

The name "Media Transfer Protocol" is used to refer to the combination of the core PTP

specification and the extension set provided by the USB-IF in this specification.

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37445&ICS1=37&ICS2=40&ICS3=99
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37445&ICS1=37&ICS2=40&ICS3=99

Revision 1.1 April 6
th

, 2011 17

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

2 Transport Requirements
MTP is intended to be transport-agnostic, that is, it is intended to function over multiple

underlying transports. However, this specification deals specifically with the USB

implementation of MTP – which assumes certain qualities in the USB transport in order

to function effectively.

2.1 Disconnection Events

An underlying transport should notify the application or service that is implementing

MTP initiator or responder functionality when a connected MTP device is disconnected

or otherwise rendered inaccessible at the transport level.

2.2 Error-Free Data Transmission

An underlying transport should guarantee error-free data transmission. This may be

provided by the transport itself, using error-correction codes or packet validation, or may

be ensured artificially on an inconsistent transport by the transport-specific

implementation definition.

2.3 Asynchronous Events

MTP devices are required to notify any connected devices immediately about any

changes in device status, device properties, object addition/deletion/modification or

storage status modifications, and so on. In order to provide that support, the underlying

transport must enable events to be communicated asynchronously with operations,

responses or data transfers.

2.4 Device Discovery and Enumeration

MTP does not attempt to define how devices are discovered or identified as supporting

MTP. This should be defined in a manner consistent with the underlying transport, and

may be performed in more than one way for a given transport.

2.5 Security and Authentication

MTP does not include any functionality for user authentication or data security. Any sort

of device validation or protection of data while in transit should be implemented in a

transport-specific manner.

2.6 Transport Independence

MTP was fundamentally defined as a transport independent protocol, while this

specification serves to define a standard USB implementation only. As a result, while this

specification shall be considered the definitive protocol reference, nothing in this

specification shall preclude the core protocol from operating over other transports. These

may include, but are not limited to, TCP/IP, Bluetooth, serial, or any other yet to be

defined transport mechanism.

Revision 1.1 April 6
th

, 2011 18

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

2.7 MTP Device Enumeration

MTP device enumeration over USB requires no specific or proprietary USB string

descriptors. Some implementations prior to the publication of this specification may

require proprietary enumeration techniques; those are not specifically covered in this

document.

Revision 1.1 April 6
th

, 2011 19

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3 Normative Reference
Within the context of MTP, certain terms and conventions are used extensively to provide

a basic foundation of functionality in the protocol. These conventions are described here.

MTP does not require that the device employ these conventions or representations in the

internal working of a device, only that they are adhered to in the implementation of the

over-the-wire protocol.

3.1 Data Formatting

PTP defines a convention for encoding datatypes and datasets, and as a PTP extension set

the data structures used in MTP are identical to those used in PTP. It is repeated here for

convenience, but the PTP specification shall (as always) be considered the definitive

source.

3.1.1 Multi-byte Data

The standard format for multi-byte data in this specification is big-endian. That is, the

bits within a byte will be read such that the most significant byte is read first. The actual

multi-byte data sent over the transport may not necessarily adhere to this same format,

and the actual multi-byte data used on the devices may also use a different multi-byte

format. The big-endian convention only applies within this document, except where

otherwise stated.

3.1.2 Bit Field Format

When bit fields are defined in this format, the least significant bit is at the zero position.

When the bit field is represented in the specification, this is the right-most position. For

example, the most significant bit of a 32-bit integer (UINT32) will be at the 31st position,

while the least significant bit will be at the 0-th position.

3.2 Simple Types

All non-opaque data in MTP consists of either an atomic value of a simple type, or an

array of atomic values of a simple type. The set of simple atomic types used in MTP is

described here as a common foundation for data representation.

Specifically, any time data is passed as a parameter to an operation, response or event, it

must take one of the following forms.

3.2.1 Simple Type Summary

Data Type code Type Description

0x0000 UNDEF Undefined

0x0001 INT8 Signed 8-bit integer

0x0002 UINT8 Unsigned 8-bit integer

0x0003 INT16 Signed 16-bit integer

Revision 1.1 April 6
th

, 2011 20

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

0x0004 UINT16 Unsigned 16-bit integer

0x0005 INT32 Signed 32-bit integer

0x0006 UINT32 Unsigned 32-bit integer

0x0007 INT64 Signed 64-bit integer

0x0008 UINT64 Unsigned 64-bit integer

0x0009 INT128 Signed 128-bit integer

0x000A UINT128 Unsigned 128-bit integer

0x4001 AINT8 Array of signed 8-bit integers

0x4002 AUINT8 Array of unsigned 8-bit integers

0x4003 AINT16 Array of signed 16-bit integers

0x4004 AUINT16 Array of unsigned 16-bit integers

0x4005 AINT32 Array of signed 32-bit integers

0x4006 AUINT32 Array of unsigned 32-bit integers

0x4007 AINT64 Array of signed 64-bit integers

0x4008 AUINT64 Array of unsigned 64-bit integers

0x4009 AINT128 Array of signed 128-bit integers

0x400A AUINT128 Array of unsigned 128-bit integers

0xFFFF STR Variable-length Unicode string

All other values Undefined Reserved (PTP)

3.2.2 Arrays

Arrays are defined in PTP (and thus MTP) as a concatenation of the same fixed-length

type. MTP does not define an array of strings. The size of each element is identified by

the simple type that is contained in the array (see 3.2.2.1). Arrays in MTP start with an

unsigned 32-bit integer that identifies the number of elements to follow, followed by a

concatenation of repeated instances of the simple type identified by the array’s datatype

code. For the purposes of this specification, arrays are considered to be zero-based.

An empty array is represented by a single 32-bit integer containing a value of

0x00000000.

3.2.2.1 Array Definition

Field Size (bytes) Format

NumElements 4 UINT32

ArrayEntry[0] Element Size Special

ArrayEntry[1] Element Size Special

… … …

ArrayEntry[NumElements-1] Element Size Special

Revision 1.1 April 6
th

, 2011 21

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3.2.3 Strings

Strings in PTP (and thus MTP) consist of standard 2-byte Unicode characters as defined

by ISO 10646. Strings begin with a single, 8-bit unsigned integer that identifies the

number of characters to follow (not bytes). An empty string is represented by a single 8-

bit integer containing a value of 0x00. A non-empty string is represented by the count

byte, a sequence of Unicode characters, and a terminating Unicode L'\0' character

(“null”). Strings are limited to 255 characters, including the terminating null character.

It should be noted that strings with embedded nulls are not permitted.

Examples:

The string L"" is represented as the single byte 0x00.

The string L"A" is represented as the five-byte sequence 0x02 0x41 0x00 0x00 0x00.

3.2.3.1 String Definition

Dataset field Size (bytes) Datatype

NumChars 1 UINT8

String Characters Variable Unicode null-terminated string

3.2.4 Decimal Types

MTP does not include decimal values as a data type. They may be represented using the

string datatype where required, or the unit of measurement can be subdivided to allow a

particular level of precision (for example, measure in thousandths instead of having

decimals to three places).

3.2.5 DateTime

DateTime strings follow a compatible subset of the definition found in ISO 8601, and

take the form of a Unicode string formatted as: "YYYYMMDDThhmmss.s". In this

representation, YYYY shall be replaced by the year, MM replaced by the month (01-12),

DD replaced by the day (01-31), T is a constant character ‘T’ delimiting time from date,

hh is replaced by the hour (00-23), mm is replaced by the minute (00-59), and ss by the

second (00-59). The ".s" is optional, and represents tenths of a second.

This string can optionally be appended with a constant character “Z” to indicate UTC, or

+/-hhmm to indicate that the time is relative to a time zone. Appending neither indicates

that the time zone is unspecified.

Leap seconds are not used in MTP.

The following regular expression accurately defines DateTime strings:

[0-9]{4}(0[1-9]|1[0-2])(0[1-9]|[12][0-9]|3[01])T([01][0-9]|2[0-3])([0-5][0-9])([0-5][0-

9])(\.[0-9])?(Z|[+-]([01][0-9]|2[0-3])([0-5][0-9]))?

Revision 1.1 April 6
th

, 2011 22

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3.3 Datacodes

In MTP, all protocol traffic is binary and of fixed length. In order to enable this, all

operations, responses, events, object formats, and properties are represented by assigned

16-bit datacodes.

Datacodes are assigned from a range which is partitioned by origin (PTP, MTP or Vendor

Extension) as well as function. Though this assignment is explicitly partitioned, the

location of a datacode in a range in the table below shall not be used to interpret the

datacode; rather, all datacodes shall be individually recognized by their specific value.

As the MTP vendor-extension set occupies the vendor-extension datacode ranges of PTP,

the MTP ranges have been further subdivided to allow vendor extensions to MTP.

3.3.1 Datacode Summary

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bits
9-0

Values Datacode type

0 0 0 0 Any Any Any 0..0xFFF Undefined

0 0 0 1 Any Any Any 0x1000..

0x1FFF

PTP Operation Code

0 0 1 0 Any Any Any 0x2000..

0x2FFF

PTP Response Code

0 0 1 1 Any Any Any 0x3000..

0x3FFF

PTP Object Format Code

0 1 0 0 Any Any Any 0x4000..

0x4FFF

PTP Event Code

0 1 0 1 Any Any Any 0x5000..

0x5FFF

PTP Device Prop Code

0 1 1 0 Any Any Any 0x6000..

0x6FFF

Reserved (PTP)

0 1 1 1 Any Any Any 0x7000..

0x7FFF

Reserved (PTP)

1 0 0 0 Any Any Any 0x8000..

0x8FFF

Undefined

1 0 0 1 0 Any Any 0x9000..

0x97FF

Vendor Extension

Operation Code

1 0 0 1 1 Any Any 0x9800..

0x9FFF

MTP Operation Code

1 0 1 0 0 Any Any 0xA000..

0xA7FF

Vendor Extension

Response Code

1 0 1 0 1 Any Any 0xA800..

0xAFFF

MTP Response Code

1 0 1 1 0 Any Any 0xB000..

0xB7FF

Vendor Extension Object

Format Code

Revision 1.1 April 6
th

, 2011 23

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

1 0 1 1 1 Any Any 0xB800..

0xBFFF

MTP Object Format Code

1 1 0 0 0 Any Any 0xC000..

0xC7FF

Vendor Extension Event

Code

1 1 0 0 1 Any Any 0xC800..

0xC8FF

MTP Event Code

1 1 0 1 0 0 Any 0xD000..

0xD3FF

Vendor Extension Device

Prop Code

1 1 0 1 0 1 Any 0xD400..

0xD7FF

MTP Device Prop Code

1 1 0 1 1 0 Any 0xD800..

0xDBFF

Vendor Extension Object

Prop Code

1 1 0 1 1 1 Any 0xDC00..

0xDFFF

MTP Object Prop Code

1 1 1 0 Any Any Any 0xE000..

0xEFFF

Reserved (PTP)

1 1 1 1 Any Any Any 0xF000..

0xFFFF

Reserved (PTP)

Individual datacode types are explained in the appropriate sections of this document.

3.4 Object Handles

Object handles are 32-bit identifiers that provide a device- and session-unique consistent

reference to a logical object on a device. All handles are represented using the UINT32

simple type. There is no special meaning attached to the value of object handles; they

may be chosen in any manner that facilitates device implementation.

Object handles are used in MTP transactions to reference a logical object on the device,

but do not necessarily reference actual data constructs on the device. As identified in

section 1.3, objects may be exposed through MTP that will be created on-demand. Object

handles are only persistent within an MTP session; once a session has been re-opened, all

previous values shall be assumed to be invalid, and the contents of the Responder must be

re-enumerated if object handles are needed.

The values "0xFFFFFFFF" and "0x00000000" have special meaning and shall not be

assigned to objects. The meanings of those values are context-specific.

3.4.1 Assigning Object Handles

Object Handles are assigned by the responder. They must be globally unique across all

storages on the device.

Object Handles are only defined within an open session. If the Initiator has not yet

opened a session, object handles do not have any meaning and cannot be used. When a

Revision 1.1 April 6
th

, 2011 24

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

session is closed, either intentionally by the initiator or as a result of an error or USB

interruption, all Object Handles are invalidated and must be re-acquired by the Initiator.

Object Handles do not persist between sessions.

If an object is deleted in a session, the Responder shall not re-use the deleted object’s

Object Handle in the same session.

3.5 Object Formats

As MTP is file-system-agnostic, the usual method of overloading file extensions to

determine file type is not a reliable method of identifying device contents. In many

cases, objects on a device may have no qualified filename, or may not even exist until

requested for transfer by the Initiator.

Instead, object formats are identified using predefined ObjectFormat datacodes.

3.5.1 Object Format Versions

The version information for a particular object format shall be contained in the object

itself in a format-specific way, and declaring support for an object format type implies

that the Responder is able to parse the data object to determine the appropriate version,

and able to decode the data contained within.

If an object format has multiple versions all identified by the same ObjectFormat

datacode, then any device that indicates support for that ObjectFormat shall be able to

interpret and consume any version of that format. If an object format defined by this

specification is not self versioning, different ObjectFormat types are assigned for each

version. Vendor-defined ObjectFormat types shall follow this convention.

3.6 Associations

Associations are used in MTP to describe hierarchical file systems on devices.

Responders and Initiators that are based on the PTP standard also use Associations to

provide a limited method of associating related image and data objects.

The use of Associations has been superseded in MTP by the concept of object references.

Refer to section 5.3.3 for more information about object references.

Associations other than type 0x1 (hierarchical) aren’t used in MTP, and should not be

unless a PTP device is being developed. In that case, the associations rules should be

followed from the PTP specification and the object references references from this

specification.

Revision 1.1 April 6
th

, 2011 25

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3.6.1 Association Types

Associations represent various collections of objects. The kind of collection is conveyed

by the Association Type field in the ObjectInfo dataset, and is also exposed in the

Association Type object property.

The Association Description field, also contained in the ObjectInfo dataset, provides

additional information to further qualify the Association type. The meaning of the

Association Description field varies depending on the Association Type.

3.6.2 Association Type Summary

Association code Association type AssociationDesc

interpretation

0x0000 Undefined Undefined

0x0001 Generic Folder Unused by PTP; used by

MTP to indicate type of

folder

0x0002 Album Reserved

0x0003 Time Sequence Default Playback Delta

0x0004 Horizontal Panoramic Unused

0x0005 Vertical Panoramic Unused

0x0006 2D Panoramic Images per row

0x0007 Ancillary Data Undefined

All other values with bit 15

set to 0

Reserved Unused

All other values with bit 15

set to 1 and bit 14 set to 0

Vendor-defined Undefined

All other values with bit 15

set to 1 and bit 14 set to 1

MTP Undefined

3.6.2.1 Generic Folder

Association objects with this Association Type represent hierarchical folders rooted on a

particular storage. This provides a mechanism of exposing a file hierarchy on the device

without relying on any path or naming conventions specific to a particular file system.

The AssociationDesc field of a Generic Folder Association may contain either

0x00000000 or 0x00000001. If it contains a value of 0x00000001, this indicates that it is

a bi-directionally linked folder, and must have Object References to each object

"contained" by this association (each object which contains this Association’s

ObjectHandle in the ParentID field of its ObjectInfo dataset).

Note that a PTP Initiator or Responder only has a defined response if a value of

0x00000000 is used in the AssociationDesc field.

Revision 1.1 April 6
th

, 2011 26

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

3.6.2.2 Album

This Association Type is PTP-specific. For more information, please refer to the

documents referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.2.3 Time Sequence

This Association Type is PTP-specific. For more information, please refer to the

documents referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.2.4 Horizontal Panoramic

This Association Type is PTP-specific. For more information, please refer to the

documents referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.2.5 Vertical Panoramic

This Association Type is PTP-specific. For more information, please refer to the

documents referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.2.6 2D Panoramic

This Association Type is PTP-specific. For more information, please refer the documents

referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.2.7 Ancillary Data

This Association Type is PTP-specific. For more information, please refer the documents

referenced in “USB Still Image Capture Device Definition – July 2000”.

3.6.3 Associations as File System Folders

The primary usage of Associations in MTP is to expose a hierarchical file system present

on the device. By making use of Associations in the communications protocol,

hierarchies may be represented without requiring any particular file name or path name

conventions, or any understanding of the device file system.

Folder hierarchies are storage-specific, and are exposed in a bottom-up fashion using the

Parent Object field in the ObjectInfo dataset. This field contains the Object Handle of

the Association that “contains” the object. The Parent Object field is also identified by

the appropriate object property (for more information, see the section on Object

Properties).

Only objects of type Association may be referenced in the Parent Object field/property.

By representing object hierarchies in a bottom-up way, associations are stateless with

regard to which objects are their children, as only children identify their parents. In this

way, object deletion does not result in having to re-establish the object hierarchy already

communicated.

Objects that exist in the root of the storage shall contain a value of 0x00000000 in the

Parent Object field/property.

Revision 1.1 April 6
th

, 2011 27

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

A full path name may be reconstructed by traversing the parentage of a particular object,

concatenating each Filename with an appropriate delimiter, in a file-system-specific way.

3.6.4 Associations and Object References

MTP enhances Associations using object references, which make generic folder

Association objects more efficient. This feature can be used when an Association object

represents a generic folder (Association Type = 0x0001), if the value of the

AssociationDesc field is 0x00000001.

For such Associations, GetObjectReferences must return references to all of the objects

contained in the folder. When objects are added to or deleted from such a folder

(whether by the Initiator or Responder), the reference list shall be updated automatically.

3.7 MTP Extensibility

The vendor-extension mechanism described in the following section addresses two major

scenarios. The first scenario is allowing a vendor to access the functionality of the USB-

IF PTP extensions while still providing their own extensions, either pre-existing or

created at a later date. The second scenario is enabling vendors that do not have an

assigned VendorExtensionID to extend the protocol as they require.

This extension scheme allows multiple vendor-extension sets to be implemented

concurrently, as long as their assigned datacodes do not overlap. It is the responsibility of

the device vendor to avoid such conflicts.

3.7.1 Identifying Vendor Extension Support

Devices identify their support for vendor extensions using the VendorExtensionDesc

field of the DeviceInfo dataset. The VendorExtensionDesc field is of datatype string,

and provides a human-readable description of the supported extensions. Each supported

extension is represented in the string value, with both the name of the extension set and

the version number of the extension set. The name and version number of the extension

set must follow a specific format:

 The name must be a valid internet domain name, owned and operated by the

organization defining the extension set.

 The version number must have the traditional format of a Dewey decimal number.

 The name of the extension set is terminated with the colon character, and the version

number is terminated with the semicolon character. A single space is required after

each terminator character (':' and ';').

Example: "abc.com: 1.0; "

Revision 1.1 April 6
th

, 2011 28

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

If several extension sets are implemented by the device, the series of names and version

numbers of the extension sets are joined in the string value. The order of the extension

sets within the value is not meaningful; the extension sets can be re-ordered within the

value with no effect on the device implementation.

Example: "company1.com: 1.2; company2.com: 2.1.4; "

3.7.2 Linking to Extension Documentation and Specification

Extension set names and version numbers can be used to find human-readable

documentation and machine-readable definitions on the Internet. The extension-set name

and version number are placed into a template URL and used to reference both types of

information. The following URL template is used to build the target URL:

 “http://www.[name]/standards/protocols/mtp/[version]/

Where the extension set name replaces the [name] parameter, and the extension set

version number replaces the [version] parameter. For example, the extension set for

"abc.com: 1.1;" has an extension set name of "abc.com" and an extension set version

number of "1.1". Replacing the [name] and [version] parameters in the URL template

would produce the target URL:

 "http://www.abc.com/standards/protocols/mtp/1.1/"

The type of the HTTP request determines which type of information is returned,

assuming that the information is available on a public server. A request for HTML will

return the human-readable documentation describing the extension set, and a request for

XML will return the machine-readable XML schema describing the extension set.

It is not required that all extensions be documented in this way, but it is very strongly

recommended.

3.7.3 Allowed Datacode Ranges

Datacodes for vendor extensions to this extension set must fall within the ranges

identified within each datacode definition as being reserved for vendor extensions to

MTP. This is a subdivision of the standard vendor-extension ranges of PTP. If no vendor-

extension range exists for the datacode that a vendor wants to extend, the vendor must

attempt to determine an alternate implementation of the desired functionality or request a

revision to this specification.

Revision 1.1 April 6
th

, 2011 29

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

4 Communication Model
MTP follows a simple operation-data-response model for all communications. While the

resulting functionality may be complex, it is entirely layered upon the core fundamentals

described in this chapter.

4.1 Initiator/Responder Roles

MTP exchanges may only occur between two products at a time, and in each

communication, one product acts as the Initiator and the other as the Responder. The

Initiator is the product that initiates actions with the responder by sending operations to

the Responder. The Responder may not initiate any actions, and may only send responses

to operations sent by the Initiator or send events.

In this specification, the USB Host is the Initiator, and the USB Device is the Responder.

The Initiator must be able to enumerate and understand the contents of the Responder,

handle and respond to events generated by the Responder, and control the flow of

operations in the protocol.

Products expected to take on the Responder role include simple content-production

devices, such as digital cameras or portable audio recorders, and simple content-display

devices, such as personal information managers and portable audio players. Products

expected to take on the Initiator role include personal computers, and products such as

direct-print printers, designed primarily to connect with simple content-production

devices.

4.2 Unidirectional Data Flow

The data flow in MTP is always unidirectional. When initiating an operation, data flows

only from the Initiator to the Responder. When responding to the requested operation, the

data flows only from the Responder to the Initiator. During the binary data-exchange

phase, data may flow from the Responder to the Initiator or from the Initiator to the

Responder, but never both. Bi-directional, binary data exchange must be performed by

multiple operations.

4.3 MTP Transactions

Any Initiator-initiated action in MTP is performed in a transaction, a standard sequence

of phases that provides the mechanism for action invocation with input parameters,

responses with parameters, and binary data exchange. Note that the name “Transactions”

is used for compatibility with the PTP specification, and must not be confused with

“Transaction” as used in the USB 2.0 specification and related documents. If there is

possibility of confusion, the term “MTP Transaction” will be used to refer to the

transactions defined in this document, and “USB Transaction” will be used to refer to the

low-level transactions of the USB spec.

Revision 1.1 April 6
th

, 2011 30

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

4.3.1 Transaction Synchronicity

All transactions in an MTP exchange are synchronous. That is, a new operation cannot be

initiated until the previous operation has fully completed. If a device supports multiple

sessions, it must manage each session to simulate synchronicity for each connected

device.

Asynchronous operations must be simulated by separating the operation into an initiation,

which begins the operation, and progress monitoring, through Responder-generated

events sent while the operation is executed in the background on the device. If an

operation is attempted while an asynchronous operation is processing which cannot be

fulfilled due to the ongoing asynchronous operation, the responder shall respond with a

Device_Busy failure code.

The only exception to this atomic process involves events. Events may be sent at any

time, and are defined in such a manner as to allow them to be sent without interrupting an

ongoing transaction. For more information about events, refer to section 4.8 Events.

4.3.2 Transaction Phases

A transaction in MTP consists of up to three phases: the Operation Request Phase, the

Data Phase, and the Response Phase. The Operation Request Phase and Response Phase

are identified together by sharing a TransactionID. The Data Phase is optional, and is

placed between the two other phases of the transaction when used.

4.3.3 Transaction IDs

Transactions are identified using an unsigned 32-bit integer called a TransactionID.

TransactionIDs are chosen by the Initiator, and should be chosen starting at 0x00000001

for the first operation initiated in a session and incremented by 1 for each successive

transaction.

The TransactionID of 0xFFFFFFFF is invalid, and shall not be used by an Initiator.

Instead, if a sequence of transactions results in the TransactionID incrementing to

0xFFFFFFFF, it shall instead wrap around to 0x00000001.

4.4 Sessions

MTP contains the concept of a session, which is a communications state in which a

connection has persisted and a state has been maintained. Sessions serve two functional

purposes in MTP: they provide a single context in which to reference objects, and they

guarantee that the Responder device state has not changed without alerting the Initiator to

that change.

An open session is not required for all operations, only for operations that require state

context to execute or respond accurately. Any operation involving an Object Handles or

StorageID is required to be session-aware. However, operations such as GetDeviceInfo

Revision 1.1 April 6
th

, 2011 31

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

do not involve any session-dependent information, and can be executed with or without

an active session.

4.4.1 Opening and Closing Sessions

The Initiator opens a Session by sending the OpenSession operation.

A session may be ended by the Initiator by sending a CloseSession operation, is ended

automatically when there is an interruption in communications between Initiator and

Responder, or may be ended at any time by the Responder. If the Responder chooses to

end a session, it shall indicate this by responding to the next session-aware operation with

a Session_Not_Open response code.

4.4.2 Choosing Session IDs

A product may maintain multiple MTP sessions concurrently, and is not required to fill

the same role in every session. It is thus required that the initiator identify the session in

which it is acting when it sends any session-aware operation. Sessions are identified by a

SessionID, a 32-bit unsigned integer, which is chosen by the Initiator and communicated

in an OpenSession operation.

If an Initiator attempts to open a session on a device that already has an open session and

that does not support multiple sessions, the Responder shall respond with a

Session_Already_Open response, and pass the SessionID of the open session as the first

parameter.

If an Initiator attempts to choose a SessionID that is already in use on a device that

supports multiple concurrent sessions, the Responder shall respond with

Session_Already_Open, and pass the chosen SessionID as the first parameter in the

response.

If an Initiator attempts to open a session on a device that supports a finite number of

multiple concurrent sessions, but that has already opened the maximum number of

supported sessions, the Responder shall fail with a response code of Device_Busy.

The values 0x00000000 and 0xFFFFFFFF have special meanings for SessionIDs. These

meanings are described in relevant operations.

Revision 1.1 April 6
th

, 2011 32

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

4.5 Operations

The Operation Request Phase initiates a transaction, and consists of the transmission of

an Operation Request dataset from the Initiator to the Responder. The dataset identifies

the operation that is being invoked by the initiator using an Operation Code, the context

in which it is to be executed (session and transaction), and a limited set of parameters

modifying the request.

4.5.1 Operation Datacodes

Operations are defined by a 16-bit datacode, which is included in the Operation Request

Dataset as defined in section 4.5.2.

The most significant 5 bits have special meaning, as described in the following table.

Bit

15

Bit

14

Bit

13

Bit

12

Bit

11

Bits

10-0

Values Datacode type

0 0 0 1 Any Any 0x1000..

0x1FFF

PTP Operation Code

1 0 0 1 0 Any 0x9000..

0x97FF

MTP Vendor Extension Operation

Code

1 0 0 1 1 Any 0x9800..

0x9FFF

MTP Operation Code

All other values are reserved.

4.5.2 Operation Dataset

The layout of the Operation Dataset is provided for reference. Depending on the

capabilities of the transport layer, some of these fields may be omitted at the interface

between Initiator and Responder, and generated as needed for internal use. For example,

the USB SIC transport omits the SessionID, because SIC only supports a single session.

The USB SIC transport includes a length prefix, which allows unused parameters to be

omitted at the USB layer.

Field Size (bytes) Datatype

Operation Code 2 UINT16

SessionID 4 UINT32

TransactionID 4 UINT32

Parameter 1 4 Any

Parameter 2 4 Any

Parameter 3 4 Any

Parameter 4 4 Any

Parameter 5 4 Any

Revision 1.1 April 6
th

, 2011 33

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

4.5.3 Operation Parameters

Information required to act on an initiated operation may be passed as parameters in the

Operation Request. This allows up to 5 parameters to be sent, each consisting of 32-bits

or less.

Additional information may also be passed in a pre-defined dataset in the Data Phase of

the transaction. Additional information about the Data Phase is available in section 4.6

Data Phases.

4.5.3.1 Operation Code

This identifies the operation being initiated by the device. For a list of these operations

and their usages, refer to the appropriate appendix.

4.5.3.2 SessionID

This identifies the session in which this operation exists. For more information about

sessions, refer to section 4.4 Sessions. If an operation occurs outside an active session,

this field shall be set to 0x00000000.

4.5.3.3 TransactionID

This provides an identifier for the transaction initiated by this operation request. For more

information, refer to section 4.3 MTP Transactions. This field shall contain 0x00000000

for operations that do not occur within a session.

4.5.3.4 Parameter n

These fields allow parameters to be passed along with an operation request. The meaning

of the contents of these fields is context-specific, and depends on the Operation Code in

the first field.

If a parameter is unused or marked as “None”, the parameter value is undefined and shall

be silently ignored. If data exists in a parameter marked as “None”, a Responder shall

return the response code Parameter_Not_Supported.

4.6 Data Phases

Following the Operation Request Phase is an optional Data Phase. The presence of this

phase is determined by the Operation Code sent in the Operation Request Phase. If the

Operation Request Phase results in an error state, the device shall still enter a Data Phase

if the Operation Code in the Operation Request Phase indicates that one is required. If

the Data Phase of an operation is I->R, and the responder enters an error state during or

before transfer, the Responder shall complete the data phase as defined (possibly

throwing away data) in order to indicate an appropriate error condition in the Response

phase.

Revision 1.1 April 6
th

, 2011 34

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The Data Phase is used to pass any data that cannot be transferred using the parameters of

the operation-request dataset. For some operation requests, this data will consist of

datasets defined by this specification. For other operation requests, the data will be

binary data exchanged for the purpose of storage on the receiving device. If the data

being sent in the data phase is not a dataset defined by this specification, it must be

considered opaque.

The actual transmission of data may involve wrapping the data to be sent in a container

format, or breaking it apart into packets to be reassembled upon receipt.

Note that when SIC class is being used for a data transport, a container is used.

4.7 Responses

Following every operation, the responder returns a response dataset as defined in section

4.7.2 Response Dataset. This response dataset contains up to five 32-bit parameters and a

ResponseCode indicating the result of the operation.

ResponseCodes other than OK indicate that the operation did not complete.

4.7.1 Response Datacodes

Responses are identified by their ResponseCode, which is included in the response

dataset as defined in section 4.7.2 Response Dataset. All ResponseCodes are 16-bit

integers, with the most significant five bits having special meaning, as described in the

following table.

Bit

15

Bit

14

Bit

13

Bit

12

Bit

11

Bits

10-

0

Values Datacode type

0 0 1 0 Any Any 0x2000..

0x2FFF

PTP ResponseCodes

1 0 1 0 0 Any 0xA000..

0xA7FF

Vendor Extension ResponseCodes

1 0 1 0 1 Any 0xA800..

0xAFFF

MTP ResponseCodes

4.7.2 Response Dataset

The layout of the Response Dataset is provided for reference. Depending on the

capabilities of the transport layer, some of these fields may be omitted at the interface

between Initiator and Responder, and generated as needed for internal use. For example,

the USB SIC transport omits the SessionID, because SIC only supports a single session.

Revision 1.1 April 6
th

, 2011 35

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The USB SIC transport includes a length prefix, which allows unused parameters to be

omitted at the USB layer.

Field Size (bytes) Format

ResponseCode 2 UINT16

SessionID 4 UINT32

TransactionID 4 UINT32

Parameter 1 4 Any

Parameter 2 4 Any

Parameter 3 4 Any

Parameter 4 4 Any

Parameter 5 4 Any

4.7.3 Response Parameters

Responses may include up to five 32-bit parameters, and all devices must include and

accommodate all parameters. When a parameter is not used for a given response, the

corresponding field shall be set to 0x00000000.

4.7.3.1 ResponseCode

This datacode identifies the result of the requested operation. Further definition of

allowed responses can be found in Appendix F – Responses.

4.7.3.2 SessionID

This field identifies the session in which this operation exists. For more information, refer

to section 4.4 Sessions. If an operation occurs outside of an active session, this field shall

be set to 0x00000000. The value of this field shall be identical to the value in the

Operation Request dataset that was received by the Responder in this transaction.

4.7.3.3 TransactionID

This field provides an identifier for the transaction initiated by this operation request. For

more information, refer to section 4.3 MTP Transactions. This field shall contain

0x00000000 for operations that do not occur within a session.

4.7.3.4 Parameter n

These fields allow parameters to be passed along with a response code. The meaning of

the contents of these fields is context-specific, and depends on the Response Code in the

first field.

If a parameter is unused or marked as “None”, the parameter value is undefined and

should be silently ignored.

Revision 1.1 April 6
th

, 2011 36

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

4.8 Events

This section describes events, their datasets and their usages. Event support is a

mandatory part of MTP.

Although events may be sent by either the Initiator or the Responder, they are primarily

sent by the Responder as a way of proactively transmitting information or alerts. Unlike

operations, events are not acknowledged, and need not be acted upon.

Events are not intended to convey information beyond the notification of an event. If an

event is indicating the change of state on the device, the event dataset will contain only

enough information to enable the device receiving the event to determine the nature of

the state change with minimal effort through normal methods.

Events may be implemented in multiple steps, by first indicating the presence of an event,

and then requiring a round-trip to retrieve it. When that is the case, the event code shall

be sent in the initial event-indication dataset, and the remaining data shall be retrievable

upon request.

Events are only sent to Initiators or Responders that are connected with an open session.

For more information on sessions, refer to section 4.4 Sessions.

4.8.1 Event Datacodes

All events are identified by their Event Code, which is a 16-bit datacode. The most

significant 5 bits have special meaning, as defined in the following table.

Bit

15

Bit

14

Bit

13

Bit

12

Bit

11

Bits

10-0

Datacode type

0 1 0 0 Any Any PTP Event Codes

1 1 0 0 0 Any Vendor extension Event Code

1 1 0 0 1 Any MTP Event Codes

4.8.2 Event Dataset

Events are communicated in the form of an event dataset, which consists of the minimum

required information to act on the event. In general, the data contained in this dataset is

minimized, and if the event code alone is insufficient, the device receiving the event must

probe the sending device for more information after receiving the event.

Field Size (bytes) Format

Event Code 2 UINT16

SessionID 4 UINT32

TransactionID 4 UINT32

Revision 1.1 April 6
th

, 2011 37

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Parameter 1 4 Any

Parameter 2 4 Any

Parameter 3 4 Any

4.8.3 Event Parameters

4.8.3.1 Event Code

This field identifies the event being indicated by this dataset. A listing of event codes and

their meanings can be found in the appropriate Appendix of this specification.

4.8.3.2 SessionID

This field identifies the SessionID for which the event is relevant. If this event is relevant

to all current sessions, it shall contain 0xFFFFFFFF. If a device receives an event for

which the SessionID does not match a session that the receiving device currently has

open, and that does not contain 0xFFFFFFFF, then the event shall be ignored.

For more information on sessions, refer to section 4.4 Sessions.

4.8.3.3 TransactionID

If the event corresponds to a previously or currently occurring transaction, this field shall

contain that transaction's TransactionID. For more information, refer to section 4.3 MTP

Transactions.

4.8.3.4 Parameter n

This field holds a parameter that can be passed with this event. Events may have at most

three parameters, and all must occupy 32 bits. The interpretation of event parameters

depends upon the event with which they are being sent.

If a parameter is unused or marked as “None”, the parameter value is undefined and

should be silently ignored.

4.8.4 Asynchronous Event Support

As explained in section 2.3 Asynchronous Events, events are required to be

communicated asynchronously with data transmission or operation transactions.

4.8.4.1 Interleaving Events

If a dedicated event channel exists, the protocol for that channel must define a process by

which events may be interleaved within a data stream during a transaction. It may be

assumed that the Operation Request Phase and Response Phase (For more information,

see sections 4.5 Operations and 4.7 Responses.) are atomic, but the Data Phase must

allow for events to be communicated in either direction without interrupting data transfer.

For more information about the data phase, refer to section 4.3.2 Transaction Phases and

section 4.6 Data Phases.

Revision 1.1 April 6
th

, 2011 38

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Care should be taken to ensure sufficient responsiveness (in general, responsiveness

should be prioritized above data-transfer speed).

Revision 1.1 April 6
th

, 2011 39

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5 Device Model

MTP is a protocol designed to represent an abstracted view of a device which can be

loosely defined by the following criteria:

 It has storage.

 It interacts with its own storage.

 It fulfils its primary purpose while not in an MTP session.

 It frequently connects to other devices using MTP in order to exchange and

update content.

5.1 Device Representation

In MTP, a device has equal prominence within the protocol as its contents.

Understanding the capabilities and properties of a device enables a number of important

scenarios above and beyond simple data transfer.

Examples of enabled scenarios include:

 Rich UI representation of a connected device

 Matching content to device capabilities

 Meta-functionality on objects, such as DRM

 Device state awareness, such as battery level or capture settings

 Device command and control

 Etc.

These scenarios are implemented by a combination of a standard device-describing

dataset (the DeviceInfo dataset) to provide basic device capabilities, which is always

present and implicit in MTP functionality; and flexible and extensible device properties.

Both are discussed in more detail below.

5.1.1 DeviceInfo Dataset

The DeviceInfo dataset is used to provide a description of the device. This dataset can be

obtained using the GetDeviceInfo operation without first initiating a session, and is

mostly static. If any value in this dataset is changed while a session is active, a

DeviceInfoChanged event shall be issued to each connected Initiator, and each Initiator

must re-acquire the DeviceInfo dataset to determine the updated values.

An example of a situation where the DeviceInfo dataset could change within a session is

as a reaction to a change in the Functional Mode of the device. A device may enter a

"sleep" state where it has a limited (but sufficient) set of enabled MTP operations and

functionality. When such a state is entered, a DeviceInfoChanged event is issued to each

active session to alert them to the changed functionality of the device.

Revision 1.1 April 6
th

, 2011 40

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Dataset field Field

order

Size (bytes) Datatype

Standard Version 1 2 UINT16

MTP Vendor Extension ID 2 4 UINT32

MTP Version 3 2 UINT16

MTP Extensions 4 Variable String

Functional Mode 5 2 UINT16

Operations Supported 6 Variable Operation Code Array

Events Supported 7 Variable Event Code Array

Device Properties Supported 8 Variable Device Property Code

Array

Capture Formats 9 Variable Object Format Code Array

Playback Formats 10 Variable Object Format Code Array

Manufacturer 11 Variable String

Model 12 Variable String

Device Version 13 Variable String

Serial Number 14 Variable String

5.1.1.1 Standard Version

This identifies the PTP version this device can support in hundredths. For MTP devices

implemented under this specification, this shall contain the value 100 (representing 1.00).

5.1.1.2 MTP Vendor ExtensionID

This identifies the PTP vendor-extension version in use by this device. For MTP devices

implemented under this specification, this shall contain the value 0xFFFFFFFF.

5.1.1.3 MTP Version

This identifies the version of the MTP standard this device supports. It is expressed in

hundredths. The final version of this specification will identify the correct value to place

in this field.

5.1.1.4 MTP Extensions

This string is used to identify any extension sets applied to MTP, and is discussed in

length later in this specification.

5.1.1.5 Functional Mode

Modes allow the device to express different states with different capabilities. If the device

supports only one mode, this field shall contain the value 0x00000000.

Value Description

0x0000 Standard mode

0x0001 Sleep state

All other values with bit 15 set to 0 Reserved

Revision 1.1 April 6
th

, 2011 41

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

0xC001 Non-responsive playback

0xC002 Responsive playback

All other values with bit 15 set to 1 and bit 14 set to 0 MTP vendor extension

All other values with bit 15 set to 1 and bit 14 set to 1 MTP-defined

The current functional mode is also contained in a device property. In order to change the

functional mode of the device, a session must be opened and the appropriate device

property updated (if allowed). More information about device properties is available later

in this document.

5.1.1.6 Operations Supported

This field identifies by datacode all operations that this device supports in the current

functional mode.

5.1.1.7 Events Supported

This field identifies by datacode all events that this device can generate in the current

functional mode.

5.1.1.8 Device Properties Supported

This field identifies by datacode all device properties that this device supports in the

current functional mode.

5.1.1.9 Capture Formats

This field identifies by datacode the object format codes for each format that this device

can generate independently (that is, without the content being placed on the device).

5.1.1.10 Playback Formats

This field identifies by datacode the object format codes for each format that this device

can understand and parse if placed on the device.

If the device can carry unidentified binary objects without understanding them, it shall

indicate this by including the Undefined Object (0x3000) code in its Playback Formats.

5.1.1.11 Manufacturer

This optional string is a human-readable string identifying the manufacturer of this

device.

5.1.1.12 Model

This optional string is a human-readable string identifying the model of this device.

5.1.1.13 Device Version

This optional string identifies the software or firmware version of this device in a vendor-

specific format.

Revision 1.1 April 6
th

, 2011 42

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.1.1.14 Serial Number

This string is required, and contains the MTP function’s serial number. Serial numbers

are required to be unique among all MTP functions sharing identical Model and Device

Version fields (this field was optional in the PTP specification, but is required in MTP).

The serial number should be the device’s unique serial number such as the one typically

printed on the device.

The serial number shall be a 32 character hexadecimal string for legacy compatibility

reasons. This string must be exactly 32 characters, including any leading 0s, and does not

require any prefix to identify it as hexadecimal (such as ‘0x’).

5.1.2 Device Properties

This section describes device properties. Device-property support is a mandatory part of

PTP, and remains unchanged in MTP beyond additional, added device properties.

Device properties identify settings or state conditions of the device, and are not linked to

any data objects on the device. Objects on the device are described using Object

Properties, which are discussed further in section 5.3.2 Object Properties.

Device Properties may be read-only or read-write, and serve different functions

depending on the context in which they are used. A single device may have only one set

of device properties, and they must be the same across all sessions and connections.

5.1.2.1 Device Property Describing Dataset

Device properties are defined by their DevicePropDesc dataset, which can be retrieved

with the GetDevicePropDesc operation.

The DevicePropDesc dataset includes the device property value, read/write settings for

the property, a default value and, where relevant, any restrictions on allowed values.

Restrictions on the allowed values of a device property are communicated using

additional fields following the core dataset. The format of the additional forms is

determined by a flag in the sixth field, which enumerates allowed forms.

Field name Field

order

Size

(bytes)

Datatype Description

Device

Property Code

1 2 UINT16 A specific device property

code.

Datatype 2 2 UINT16 Identifies the data type code

of the property, as defined in

section 3.2 Simple Types.

Get/Set 3 1 UINT8 Indicates whether the

property is read-only (Get),

Revision 1.1 April 6
th

, 2011 43

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

or read-write (Get/Set).

0x00 Get

0x01 Get/Set

Factory Default

Value

4 DTS DTS Identifies the value of the

factory default for the

property.

Current Value 5 DTS DTS Identifies the current value of

this property.

Form Flag 6 1 UINT8 Indicates the format of the

next field.

0x00 None. This is for

properties like DateTime. In

this case the FORM field is

not present.

0x01 Range-Form

0x02 Enumeration-Form

FORM N/A <variable> - This dataset depends on the

Form Flag, and is absent if

Form Flag = 0x00.

5.1.2.1.1 Range Form

Range form

Field name Field
order

Size
(bytes)

Datatype Description

Minimum Value 7 DTS DTS Minimum value supported by

this property.

Maximum Value 8 DTS DTS Maximum value supported by

this property.

Step Size 9 DTS DTS A particular vendor's device

shall support all values of a

property defined by Minimum

Value + N x Step Size, which is

less than or equal to Maximum

Value where N= 0 to a vendor-

defined maximum.

5.1.2.1.2 Enumeration Form

Revision 1.1 April 6
th

, 2011 44

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Enumeration form

Field name Field
order

Size

(bytes)

Datatype Description

Number Of Values 7 2 UINT16 This field indicates the number

of values of size DTS of the

particular property supported

by the device.

Supported Value 1 8 DTS DTS A particular vendor's device

shall support this value of the

property.

Supported Value 2 9 DTS DTS A particular vendor's device

shall support this value of the

property.

Supported Value 3 10 DTS DTS A particular vendor's device

shall support this value of the

property.

… … … … …

Supported Value M M+7 DTS DTS A particular vendor's device

shall support this value of the

property.

5.1.2.2 Retrieving Device Properties

Device Properties may be retrieved by one of two methods: They may be retrieved as a

part of the Device Property Description Dataset returned by the GetDevicePropDesc

operation, or they may be retrieved in a more-streamlined fashion by the

GetDevicePropValue operation.

If both operations are supported by a Responder, the Initiator may use the

GetDevicePropValue whenever the additional information contained in the

DevicePropDesc dataset is not required. If a Responder is to optimize device-property

retrieval, it shall enable and implement the GetDevicePropValue operation. Similarly, if

an Initiator wishes to be performance-conscious when retrieving device properties, it

should use the GetDevicePropValue operation if implemented. The

GetDevicePropDesc/GetDevicePropValue operation should only be called when

information other than the DevicePropDesc dataset is required.

5.1.2.3 Setting Device Properties

Device property values may be set by the SetDevicePropValue operation, or may be

updated as a result of changes to the state of the device. It is also permitted for a device

property to be static, to provide information about the device that is not contained by the

DeviceInfo dataset.

Revision 1.1 April 6
th

, 2011 45

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

When a device property value is changed by a SetDevicePropValue operation request,

all connected Initiators shall be alerted to the change with a DevicePropChanged event,

except the Initaitor that directly caused the change. If a device property value is updated

by any mechanism except the SetDevicePropValue operation, then all connected

Initiators shall receive the DevicePropChanged event, including any Initiators that may

have indirectly caused the property to be changed.

Device properties shall all be set atomically, and the act of setting one device property

does not imply a change to any other device property. In cases where device property

values are inherently intertwined, this specification combines those values into a single

property where possible. For example, Width and Height are combined into the Image

Size property.

If updating one property changes the indicated allowed values for another property, such

as if increasing the Image Size reduced the allowed Bit Depth settings, this should be

indicated using the DevicePropChanged event.

5.1.2.4 Device Properties as Device Control

Device Properties may be read-only or read-write. In the case where device properties

identify the current functional state of the device, the state may be changed through the

use of a writeable device property.

An example of a Device Property used for functional control of the device is the Digital

Zoom device property, which identifies not only the current Digital Zoom setting, but

also allows the initiator to set a new Digital Zoom setting. Another example is the

Functional Mode device property.

5.2 Storage Representation

MTP devices generally include a substantial amount of persistent data storage, either

contained in the device or on a removable storage medium. This section provides

additional information about the required representation of that storage.

5.2.1 Storage IDs

Storages are identified in MTP using a 32-bit unsigned integer (UINT32), called a

StorageID. The StorageID is subdivided into two halves, the most-significant 16 bits

and the least-significant 16 bits. The most-significant 16 bits identify a physical storage

location, such as a removable memory card or an internal memory bank. The least-

significant 16 bits identify a logical partition of that physical storage.

Devices may contain zero or more physical storages, and each physical storage may have

zero or more logical storages. Each physical storage is defined by a unique 16-bit code

occupying the most-significant 16 bits of the StorageID. If two StorageIDs contain an

identical, top-most 16 bits, they are assumed to exist on the same physical component of

Revision 1.1 April 6
th

, 2011 46

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

the device. The upper 16-bits of the StorageID may contain any values except 0x0000

and 0xFFFF, which may have special meaning, depending on the lower 16 bits.

If a physical storage contains no logical storages, it shall be represented using a single

StorageID in which the least-significant 16-bit segment contains the value 0x0000. Any

storage for which the lower 16 bits are 0x0000 is assumed to neither contain any data nor

be able to have data written to it.

If a physical storage contains one or more logical storages, each storage must contain the

same top-most 16-bit segment, to indicate that it is located in the same physical location.

Logical stores are defined by the lower 16-bits of the StorageID. Each logical storage on

a physical storage must be identified by a unique 16-bit segment. The lower 16 bits of the

StorageID may contain any value but 0x0000 (which has special meaning as outlined

previously) and 0xFFFF (which may have special meaning depending on the upper-most

16 bits).

A StorageID of 0x00000000 or 0xFFFFFFFF has special meaning, depending on

context, such as "All Storages" or "default store", and does not refer to an actual storage.

The meaning is explained with the operation/response/event where it is used.

StorageIDs shall not be assumed to persist between sessions.

5.2.2 StorageInfo Dataset Description

This dataset describes a storage contained in a device.

Dataset field Field order Length (bytes) Datatype

Storage Type 1 2 UINT16

Filesystem Type 2 2 UINT16

Access Capability 3 2 UINT16

Max Capacity 4 8 UINT64

Free Space In Bytes 5 8 UINT64

*Free Space In Objects 6 4 UINT32

Storage Description 7 Variable String

Volume Identifier 8 Variable String

5.2.2.1 Storage Type

This field identifies the physical nature of the storage described by this dataset. If the

Storage Type is read-only memory (0x0001 or 0x0002), it supersedes any protection

status indicated by the Access Capability field.

Allowed values are shown in the following table.

Revision 1.1 April 6
th

, 2011 47

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Code value Description

0x0000 Undefined

0x0001 Fixed ROM

0x0002 Removable ROM

0x0003 Fixed RAM

0x0004 Removable RAM

All other values Reserved

5.2.2.2 Filesystem Type

This field identifies the logical file system in use on this storage. This field may be used

to define the file-naming conventions or directory structure conventions in use on this

storage, as well as indicate support for a hierarchical file system.

Allowed values are shown in the following table.

Code Value Description

0x0000 Undefined

0x0001 Generic flat

0x0002 Generic hierarchical

0x0003 DCF

All other values with bit 15 set to 0 Reserved

All other values with bit 15 set to 1 and bit 14 set to 0 MTP vendor extension

All other values with bit 15 set to 1 and bit 14 set to 1 MTP-defined

5.2.2.3 Access Capability

This field identifies any write-protection that globally affects this storage (this supersedes

any protection status on individual objects). If the Storage Type field indicates that this

storage is defined as ROM (0x0001 or 0x0002), this field must contain the value 0x0001

(read-only without object deletion).

Allowed values are shown in the following table.

Code value Description

0x0000 Read-write

0x0001 Read-only without object deletion

0x0002 Read-only with object deletion

All other values Reserved

5.2.2.4 Max Capacity

This field identifies the maximum capacity in bytes of this storage. If this storage can be

written to, that is, the storage type is not read-only and the access capability is read-write,

Revision 1.1 April 6
th

, 2011 48

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

then this field must contain an accurate value. If the storage is read-only, this field is

optional.

5.2.2.5 Free Space In Bytes

This field indicates how much space remains to be written to on the drive. If this storage

can be written to, that is, the storage type is not read-only and the access capability is

read-write, then this field must contain an accurate value. If the storage type is read-only,

this field is optional. If Free Space In Bytes does not apply to this device or this storage,

and it can be written to, this field may contain a value of 0xFFFFFFFF, and the Free

Space In Objects field may be used instead.

5.2.2.6 Free Space In Objects

This field indicates how many additional objects may be written to this device. This field

shall only be used if there is a reasonable expectation that the number of objects that

remain to be written can be accurately predicted (for instance, if the device contains only

one object type of fixed size.).

If this field is not used, it shall be set to 0xFFFFFFFF.

5.2.2.7 Storage Description

This optional field contains a human-readable string identifying this storage, such as

"256Mb SD Card" or "20Gb HDD". If unused, it shall contain an empty string.

5.2.2.8 Volume Identifier

This field contains a unique, programmatically relevant volume identifier, such as a serial

number. This field may be up to 255 characters long, however, only the first 128

characters will be used to identify the device, and these first 128 characters must be

unique for all storages. If this field does not contain a string in which the first 128

characters are unique, it must contain an empty string.

5.2.3 Defining Access Restrictions

If the device has restrictions on allowed operations on the content of the device, such as

read-only, or read-deletion only, this shall be indicated in the AccessCapability field of

the StorageInfo dataset. For more information, refer to section 5.2.2 StorageInfo Dataset

Description.

5.3 Content Representation

In MTP, all contents of a device are represented as objects. Objects are abstract

containers for a variety of data, which each represent an atomic element of information.

Examples of objects include:

 Image Files

 Audio/Video Files

 Contacts

 Calendar/Task Items

Revision 1.1 April 6
th

, 2011 49

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

 Generic Binary Files

 Etc.

Objects are comprised of four parts: the object’s binary data, the ObjectInfo dataset,

Object Properties and Object References. Each component serves a different purpose,

and together they facilitate broad interoperability and a rich enumeration experience.

The ObjectInfo Dataset is a standard fixed dataset available for every object, and

provides basic information about an object. This information includes the object type,

object size, etc, and represents the information required for every object in order to

enable basic object management. The ObjectInfo dataset was originally defined in PTP,

and has been largely replaced in MTP by Object Properties.

Object Properties provide a flexible and extensible way of representing object metadata.

They may be used to describe a device in either (or both) a machine-readable or human-

readable way, and serve to not only describe the actual content of the object but also to

indirectly indicate the various structures a particular object format can take.

Finally, Object References provide an internal referencing feature within MTP, allowing

objects to associate themselves with other objects, a feature which would otherwise be

impossible without a standard persistent addressing mechanism.

5.3.1 ObjectInfo Dataset Description

The ObjectInfo dataset provides an overview of the core properties of an object. These

properties are also retrievable as Object Properties (detailed later in this document), and

must be accessible through both mechanisms.

The contents of the ObjectInfo dataset were originally defined for imaging-centric

devices, and continue to be used for that purpose. For devices to be compatible with

existing PTP implementations, it is very important that this dataset be accurately filled

out in accordance with the PTP specification. For more information, please refer to that

document.

Many fields in the ObjectInfo dataset do not apply to non-imaging objects; these fields

shall be set to zero when not in use.

MTP still requires the use of the ObjectInfo dataset in various operations that require an

encapsulated view of core file attributes, such as when sending a new object to the

device. The fields that are required for the MTP SendObjectInfo operation are

specifically called out in the following table.

Revision 1.1 April 6
th

, 2011 50

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Fields marked with a * are supplanted in MTP with new mechanisms, but must be

implemented if PTP-compatibility is desired. Refer to the PTP specification for

implementation details for these fields.

Dataset field Field

order

Size

(bytes)

Datatype Required for

SendObjectInfo

StorageID 1 4 StorageID No

Object Format 2 2 ObjectFormatCode Yes

Protection Status 3 2 UINT16 No

Object Compressed Size 4 4 UINT32 Yes

*Thumb Format 5 2 ObjectFormatCode No

*Thumb Compressed Size 6 4 UINT32 No

*Thumb Pix Width 7 4 UINT32 No

*Thumb Pix Height 8 4 UINT32 No

Image Pix Width 9 4 UINT32 No

Image Pix Height 10 4 UINT32 No

Image Bit Depth 11 4 UINT32 No

Parent Object 12 4 ObjectHandle No

Association Type 13 2 Association Code Yes

Association Description 14 4 AssociationDesc Yes

*Sequence Number 15 4 UINT32 No

Filename 16 Variable String Yes

Date Created 17 Variable DateTime String No

Date Modified 18 Variable DateTime String No

Keywords 19 Variable String No

5.3.1.1 StorageID

The device storage on which the object defined by this dataset is located. For more

information about StorageIDs, refer to section 5.2.1 "Storage IDs".

5.3.1.2 ObjectFormat

Every object format type is identified by an ObjectFormatCode. Refer to section 3.5

Object Formats for more information about Object Formats.

5.3.1.3 Protection Status

An optional field that identifies the write-protection status of a data object. This field may

be updated using the SetProtection operation.

If the device does not support object protection, this field should always contain 0x0000,

the SetProtection operation should not be supported, and the only allowed value

identified in the ObjectPropDesc field should be 0x0000.

Revision 1.1 April 6
th

, 2011 51

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Read-only protection may modified with the SetObjectProtection operation if allowed by

the device. Read-only protection may not be modified by mechanisms used to set Object

Properties.

Allowed values are shown in the following table:

Value Description

0x0000 No protection

0x0001 Read-only

0x8002 Read-only data

0x8003 Non-transferable data

All other values Reserved

No Protection: This object has no protection; it may be modified or deleted

arbitrarily and its properties may be modified freely.

Read-only: This object cannot be deleted or modified; none of the properties of

this object can be modified by the initiator. (However, properties can be modified

by the device that contains the object.)

Read-only data: This object’s binary component cannot be deleted or modified;

however; any object properties may be modified if allowed by the object property

constraints.

Non-transferable data: This object’s properties may be read and modified, and it

may be moved or deleted on the device, but this object’s binary data may not be

retrieved from the device using a GetObject operation.

This property identifies the write-protection status of the binary component of the

data object.

The allowed values for this property for a device should be enumerated in

ObjectPropDesc dataset and are defined as follows:

Revision 1.1 April 6
th

, 2011 52

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Value Description

0x0000 No Protection

This object has no protection, it may be modified or deleted

arbitrarily, and its properties may be modified freely.

0x0001 Read-only

This object cannot be deleted or modified, and none of the properties

of this object can be modified by the initiator. (Properties may be

modified by the device which contains the object however.)

0x8002 Read-only data

This object’s binary component cannot be deleted or modified,

however any object properties may be modified if allowed by the

object property constraints.

0x8003 Non-transferrable data

This object’s properties may be read and modified, and it may be

moved or deleted on the device, but this object’s binary data may not

be retrived from the device using a GetObject operation.

0x0002-0x7FFF Reserved for PTP

0x8004-0x8BFF Reserved for MTP

0x8C00-0xFFFF MTP Vendor Extension Range

This property may be indirectly set using the SetObjectProtection operation.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC03

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device Defined

FormFlag 6 1 UINT8 0x02 Enumeration Form

5.3.1.4 Object Compressed Size

The size of the data component of the object in bytes. If the object is larger than 2^32

bytes in size (4GB), this field shall contain a value of 0xFFFFFFFF.

5.3.1.5 *Thumb Format, *Thumb Compressed Size, *Thumb Pix Width, *Thumb

Pix Height

These fields provide information about thumbnails of images on the device. In MTP,

thumbnail functionality has been supplanted with the Representative Sample Object

Properties, and in most cases these values shall be duplicated there.

Revision 1.1 April 6
th

, 2011 53

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

If PTP-compatibility is desired, these fields shall be supported for all image objects, and

the associated operations shall be implemented.

5.3.1.6 Image Pix Width

If the defined object is an image, this field identifies the width in pixels of that image.

This information is also available in MTP through the object property mechanism, but

shall be implemented here to maintain PTP-compatibility if desired.

5.3.1.7 Image Pix Height

If the defined object is an image, this field identifies the height in pixels of that image.

This information is also available in MTP through the object property mechanism, but

shall be implemented here to maintain PTP-compatibility if desired.

5.3.1.8 Image Bit Depth

If the defined object is an image, this field identifies the bit depth of that image. This

information is also available in MTP through the object property mechanism, but shall be

implemented here to maintain PTP-compatibility if desired.

5.3.1.9 Parent Object

If this object exists in a hierarchy, this field contains the Object Handle of the parent of

this object. Only objects of type Association may be identified in this field. If this object

is in the root or the device does not support Associations, this field shall be set to

0x00000000.

More information about Associations is contained in section 3.6 Associations.

5.3.1.10 Association Type

This field is only used for objects of type Association, and indicates what type of

Association it is. In MTP, the Generic Folder Association type is most commonly used,

which has an Association Type code of 0x0001.

More information about Associations is contained in section 3.6 Associations.

5.3.1.11 AssociationDesc

This field is used only for objects of type Association, and provides additional

information about the implementation of this particular type.

More information about Associations is contained in section 3.6 Associations.

5.3.1.12 Sequence Number

This field is used in PTP to further define certain non-folder types of associations. It is

not generally used in MTP, but should be implemented by any Responder that desires the

provided functionality and that wishes to interact with PTP Initiators.

Revision 1.1 April 6
th

, 2011 54

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

More information about the use of Sequence Numbers in Associations is contained in

section 3.6 Associations.

5.3.1.13 Filename

A string containing the file name of this object, without any directory or file system

information. This string is also accessible and defined via an Object Property, and

restrictions on its format may be identified in the Object Property Description for this

object property.

5.3.1.14 Date Created

This field identifies the creation date of this object, and uses the DateTime string as

described in section 3.2.5 DateTime.

5.3.1.15 Date Modified

This field identifies the date when this object was last modified, and uses the DateTime

string described in section 3.2.5 DateTime.

5.3.1.16 Keywords

This field contains keywords associated with the object. Keywords shall be delimited by

a single space: " ". If a given keyword contains a space, the space shall be replaced with

an underscore character: "_".

5.3.2 Object Properties

Object properties provide a mechanism for exchanging object-describing metadata

separate from the objects themselves. The primary benefit of this functionality is to

permit the rapid enumeration of large storages, regardless of the file-system.

In PTP, there is an existing mechanism for describing an object, the ObjectInfo dataset

(PTP Specification, section 5.5.2). This is a static and non-extensible dataset containing

basic information about the object, and assumes that the object being described is an

image object.

There is also an extensible property system in device properties (PTP Specification,

section 13). These properties are notable, as they define the format their values can take,

which allows for much safer device management. By restricting property values and

formats at the protocol level, the responder has a much simpler time parsing and

understanding that metadata for its own use.

Object properties combine these two concepts. They provide information about objects

on the device, and specify the values they can contain.

Revision 1.1 April 6
th

, 2011 55

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.2.1 Requirements for Object Property Support

A device that will implement object properties must support the following operations:

o GetObjectPropsSupported

o GetObjectPropValue

o GetObjectPropDesc

A corollary of this is that all devices that support these minimum requirements are

assumed to support object properties as a primary method of retrieving object metadata.

5.3.2.2 Identifying Object Property Support

Devices that identify their support for the operations listed previously in their DeviceInfo

dataset are considered to support object properties, and will be treated as such by

initiators that understand the USB-IF PTP extension set. Devices that do not support the

minimum requirements listed previously will not be considered to support object

properties.

Object properties are format-specific. That is, for all objects on a device of the same

format, the same set of object properties will be supported. Discovering which object

properties are applied to a given object format is accomplished by the

GetObjectPropsSupported operation, with the format code passed as the argument in

the table in the next section.

The GetObjectPropsSupported operation returns an ObjectPropCode array of

supported object properties for the object format indicated in the first parameter. More

details about the GetObjectPropsSupported operation are available in the appropriate

appendix of this specification.

5.3.2.3 Defining Object Properties

Object properties are defined by an ObjectPropDesc dataset much in the same way that

device properties are defined by their DevicePropDesc dataset (PTP Specification,

section 13.3.3).

Before an object property is queried for the first time, its ObjectPropDesc should be

retrieved from the device by using the GetObjectPropDesc operation. The

ObjectPropDesc dataset is defined in Table 5-1.

The GetObjectPropDesc operation returns the appropriate Property Describing Dataset,

indicated in the first parameter as defined for the Object Format indicated in the second

parameter. More details about the GetObjectPropDesc operation are available in

Appendix D.2.30 GetObjectPropDesc.

A base set of object properties are defined in the MTP specification, but many aspects of

an object property need to be defined by the device for its particular implementation,

particularly properties that the device will use for its own operations.

Revision 1.1 April 6
th

, 2011 56

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The ObjectPropDesc dataset is formatted as shown in the following table:

Table 5-1. ObjectPropDesc dataset

Field name Field

order

Size

(bytes)

Datatype Description

Property Code 1 2 UINT16 A specific ObjectPropCode

identifying this property.

Datatype 2 2 UINT16 This field identifies the

datatype code of the property.

Get/Set 3 1 UINT8 This field indicates whether the

property is read-only (Get), or

read-write (Get/Set).

0x00 Get

0x01 Get/Set

Default Value 4 DTS DTS This field identifies the value

of the factory default for the

property.

Group Code 5 4 UINT32 This field identifies the

retrieval group this property

belongs to.

Form Flag 6 1 UINT8 This field indicates the format

of the next field.

0x00 None

0x01 Range form

0x02 Enumeration form

0x03 DateTime form

0x04 Fixed-length Array form

0x05 Regular Expression form

0x06 ByteArray form

0xFF LongString form

FORM N/A <variable> - This dataset depends on the

Form Flag, and is absent if

Form Flag = 0x00.

5.3.2.3.1 Range Form

Field name Field

order

Size

(bytes)

Datatype Description

MinimumValue 7 DTS DTS Minimum value supported by

this property.

MaximumValue 8 DTS DTS Maximum value supported by

this property.

Step Size 9 DTS DTS The property shall support all

Revision 1.1 April 6
th

, 2011 57

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

values defined by

MinimumValue+N*StepSize,

which is less than or equal to

MaximumValue.

5.3.2.3.2 Enumeration Form

Field name Field

order
Size

(bytes)

Datatype Description

NumberOfValues 7 2 UINT16 The number of values, of size

DTS, supported by the

property. These shall be listed

in order of preference if

applicable.

SupportedValue1 8 DTS - The property shall support this

value.

SupportedValue2 9 DTS - The property shall support this

value.

SupportedValueM 7+M DTS - The property shall support this

value.

5.3.2.3.3 DateTime Form

Properties that have the DateTime form have no additional fields. Date and time are

represented in ISO standard format as described in ISO 8601, from the most significant

number to the least significant number. This shall take the form of a Unicode string in the

format “YYYYMMDDThhmmss.s” where YYYY is the year, MM is the month (01 to 12),

DD is the day of the month (01 to 31), T is a constant character, hh is the hours since

midnight (00 to 23), mm is the minutes past the hour (00 to 59), and ss.s is the seconds

past the minute, with the “.s” being optional tenths of a second past the second.

This string can optionally be appended with Z to indicate UTC, or +/-hhmm to indicate

that the time is relative to a time zone. Appending neither indicates that the time zone is

unknown.

5.3.2.3.4 Fixed-length Array Form

Revision 1.1 April 6
th

, 2011 58

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Field

name

Field

order
Size

(bytes)

Datatype Description

Length 7 2 UINT16UNIT32 A 32-bit unsigned integer

giving the number of

elements which must be

included in the array

contained by this property.

All properties which have

this form must contain an

array.

5.3.2.3.5 Regular Expression Form

Field

name

Field

order
Size

(bytes)

Datatype Description

RegEx 7 - String A regular expression that must exactly

generate the value of this property.

A standardized syntax for regular

expressions as they are used in MTP is

available at:

http://msdn2.microsoft.com/en-

us/library/1400241x.aspx

(page title: “Regular Expression Syntax

(Scripting)”)

5.3.2.3.6 ByteArray Form

Field name Field

order

Size

(bytes)

Datatype Description

MaxLength 7 4 UINT32 The maximum length of the

ByteArray that may be contained

by this property. The device shall

accept any property values that

have a NumElements value equal

to or less than this field.

Properties that have a ByteArray

form must contain an AUINT8

datatype, which contains an array

of bytes.

Revision 1.1 April 6
th

, 2011 59

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.2.3.7 LongString Form

Field name Field

order

Size

(bytes)

Datatype Field orderDescription

MaxLength 7 4 UINT32 The maximum length of the

LongString that may be contained

by this property. The device shall

accept any property values that

have a NumElements value equal

to or less than this field.

Properties that have a LongString

form must contain an AUINT16

datatype, which contains characters

encoded in 2-byte Unicode

characters, as described in

ISO10646.

5.3.2.4 Retrieving Object Properties

When information about an object is required, the properties can be retrieved one at a

time using the GetObjectPropValue operation, which returns the current value of an

object property. A complete description of the GetObjectPropValue operation can be

found in the appropriate appendix of this specification.

5.3.2.5 Setting Object Properties

If a device supports the setting of object properties, which it indicates by supporting the

SetObjectPropValue operation, then properties can be identified as settable by setting

the Get/Set field in the ObjectPropDesc dataset. Those properties can be updated to any

value that satisfies the constraints defined in its ObjectPropDesc dataset.

The SetObjectPropValue operation sets the current value of the object property

indicated by parameter 2 for the object indicated by parameter 1 to the value indicated in

the data phase of the operation. The format of the property value object sent in the data

phase can be determined by the DatatypeCode field of the property's ObjectPropDesc

dataset. If the property is not settable, the response Access_Denied shall be returned. If

the value is not allowed by the device, Invalid_ObjectProp_Value shall be returned. If the

format or size of the property value is incorrect, Invalid_ObjectProp_Format shall be

returned.

The SetObjectPropValue operation is fully defined in the appropriate appendix of this

specification.

Revision 1.1 April 6
th

, 2011 60

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.2.6 Required Object Properties

Devices which implement Object Properties must implement as Object Properties the

properties which map to the required fields of the ObjectInfo dataset, as well as certain

properties which are required for effective functioning of the protocol. Required

properties for all object formats include:

 StorageID

 ObjectFormat

 ObjectCompressedSize

 Persistent Unique Object Identifier

 Name

Devices which support file systems through the use of associations must support the

following object properties:

 ParentObject

5.3.2.7 Optimizing Object Properties

The development of object properties allows considerable improvements in functionality

over the static descriptive set of metadata exposed in the ObjectInfo dataset, however, it

comes at the cost of a dramatically increased number of queries to the device. This has

been mitigated in the Basic MTP specification by defining object-property retrieval

groups.

5.3.2.7.1 Object Property Groups

Many devices currently maintain an accelerator file or database containing a subset of

available metadata used by the device for its own UI. These metadata items, when

defined as object properties, are much more easily and efficiently retrieved than metadata

stored within the content on the device.

Devices are encouraged to identify the relative retrieval qualities of different properties

by assigning them a group value in the ObjectPropDesc dataset, and allowing them to be

retrieved based on that group value. Group codes shall be assigned in ascending order,

based upon the relative retrieval speed of the property.

The expected behavior of an initiator that is taking advantage of object property groups is

that it will retrieve properties in ascending order.

5.3.2.7.2 Special Values for Object Property Groups

Revision 1.1 April 6
th

, 2011 61

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Properties of essentially unbounded size shall be marked with a group code of

0xFFFFFFFF. This includes any property defined by a LongString or ByteArray form. It

is the responsibility of the device to accurately identify these groups.

5.3.2.8 Representative Samples

It is often desirable to sample an object without acquiring the entire object, or to provide

a visual representation of the object. Examples of this include adding album art to an

album, representative audio clips to music files, or thumbnails to image files. These

representative samples are enabled by embedding them in a property value.

There are six properties related to representative samples. The first five properties are

descriptive of the representative sample, and cannot be set by the initiator. Rather, the

ObjectPropDesc fields of those properties are provided to define the allowable values of

the representative sample, and the values of the properties must be inferred from the

representative sample itself.

Example:

A portable media player needs to attach representative clips of audio files to full-length

songs in order to facilitate audio-only navigation of the contents of a device. To do so, the

media player would identify the format(s) in which the clips are desired in the

ObjectPropDesc dataset for the RepresentativeSampleFormat property on the audio clip

formats. Further, the range of desired durations for the sample is provided in the

RepresentativeSampleDuration ObjectPropDesc dataset, and the maximum file size of the

sample in the RepresentativeSampleSize ObjectPropDesc dataset. This information

would be sufficient for an initiator to send an appropriate clip to the device.

When an initiator is browsing that device later, it can identify the file size, duration, and

format of the representative sample by retrieving those properties. The values for those

properties must be populated by the responder automatically when the sample is sent to

(or created on) the device.

Revision 1.1 April 6
th

, 2011 62

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.2.9 Example of Object Properties in Use

The following table shows an overview of the object property exchange process,

presented as a step-through of the dialog between an MTP Initiator and Responder.

Step Initiator action Parameter1 Parameter2 Parameter3 Responder

action

1 GetDeviceInfo 0x00000000 0x00000000 0x00000000 Send

DeviceInfo

dataset.

2 OpenSession SessionID 0x00000000 0x00000000 Create

ObjectHandle

s and

StorageIDs if

necessary.

3 GetObjectHandles 0xFFFFFFFF 0xFFFFFFFF 0x00000000 Send

ObjectHandle

array.

4 GetObjectPropSupport

ed

ObjectFormatCode 0x00000000 0x00000000 Send

ObjectPropC

ode array.

5 GetObjectPropDesc ObjectProp 1 Object

Format 1

0x00000000 Send

ObjectPropD

esc dataset.

6 Repeat step 5 for each

ObjectProperty

ObjectProp n 0x00000000 0x00000000 Send

ObjectPropD

esc dataset.

7 GetObjectPropValue ObjectHandle 1 ObjectPropC

ode 1

0x00000000 Send value of

ObjectProp 1

for

ObjectHandle

1.

8 Repeat step 7 for each

ObjectHandle x

ObjectPropCode

ObjectHandle m ObjectPropC

ode n

0x00000000 Send value of

ObjectProp n

for

ObjectHandle

n.

9 CloseSession 0x00000000 0x00000000 0x00000000 Close session.

5.3.2.10 Summary

Object properties provide a more extensible, more flexible, and higher performance

method for object metadata exchange and enumeration. They allow devices to describe

content separate from the binary data itself, which provides value to devices or

applications which do not understand the underlying format, and allows much faster and

more flexible content enumeration.

Revision 1.1 April 6
th

, 2011 63

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Object properties are an ongoing effort, and will continue to evolve for the lifespan of

MTP. Any changes to the default set of Object Properties in MTP are strictly additive

following version 1.0 of the MTP specification.

5.3.3 Object References

MTP is a file system-independent protocol, which allows more flexibility in device

design. As a consequence of not being able to rely on a common and consistent

addressing mechanism, MTP lacks the ability to form complex linkages between objects

by embedding file names. An abstract referencing mechanism has been defined to allow

arbitrary object referencing.

5.3.3.1 Object Reference Structure

The Object Reference Dataset consists of a single AUINT32, an array of 32-bit unsigned

integers, which contains the Object Handle of each object which is referenced by the

object to which the Object Reference Dataset in question is attached.

More specifically the dataset looks like:

Field Size (bytes) Format

NumElements 4 UINT32

ArrayEntry[0] 4 ObjectHandle

ArrayEntry[1] 4 ObjectHandle

… … …

ArrayEntry[NumElements-1] 4 ObjectHandle

5.3.3.2 Setting Object References

Devices that support object-reference retrieval and are write-capable (that is, they can

have objects sent to them as well as retrieved) shall also support the setting of object

references.

Object references are set by passing the whole array of references for that object in the

SetObjectReference operation, and is defined in the appropriate appendix of this

specification.

This operation replaces the object references on a device with the array of object handles

passed in the data phase. The object handles passed in the data phase must be maintained

indefinitely, and returned as valid ObjectHandles referencing the same object in later

sessions. If any of the object handles in the array passed in the data phase are invalid, the

responder shall fail the operation by returning a response code of Invalid_ObjectHandle.

An object handle may be present multiple times in a single array of references. An

example of this is a song that appears multiple times in a single playlist.

Revision 1.1 April 6
th

, 2011 64

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

5.3.3.3 Retrieving Object References

If a device indicates support for object references, it must allow those object references to

be retrieved by using the GetObjectReferences operation.

The GetObjectReferences operation returns an array of currently valid ObjectHandles.,

and is defined in the appropriate appendix of this specification.

5.3.3.4 Identifying Support for Object References

For a device to be queried for object references, it must identify support for the

GetObjectReferences operation in the OperationsSupported field of its DeviceInfo

dataset.

Once support for that operation has been declared, the initiator may query for and expose

any and all object references.

5.3.3.5 References are Unidirectional

References are unidirectional, and one cannot determine which objects reference a given

object without examining all the references on all the objects on the device. This does not

prevent the device from containing this information in its internal representation of

references.

5.3.3.6 The Meaning of Object References Is Contextual

Object references do not include any inherent meaning. An object either references

another object, or it does not, and no additional information is contained within that

definition.

In practice, the meaning will be defined by context. For example, when a media object

references a DRM certificate, the DRM certification may be interpreted as being a license

defining the allowed usage of that media object. If a photograph references an audio clip,

that may indicate an audio annotation.

In many cases, the meaning will be unclear to the device, but the device shall maintain

consistent references between objects anyway, to preserve information between

connectivity sessions.

5.3.3.7 Reference Maintenance

The object handles returned must be consistent between sessions. That is, the actual

values may change, but the objects they reference and the order in which those objects

are listed cannot change. It is the responsibility of the device to manage those references

between sessions such that they remain consistent, and to manage the removal of invalid

Object References (caused by an object being deleted from a device.)

Revision 1.1 April 6
th

, 2011 65

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

If a referenced object is deleted on the device between sessions, the device must remove

all instances of that object in all other objects’ references. This removal may be done

lazily, when the references for an object are requested.

The unidirectional and context-dependent design of references is designed to facilitate

reference maintenance on the device.

5.3.4 Basic Object Transfer

5.3.4.1 Sent Object Placement

When a new object is sent using the SendObject operation, the Initiator may attempt to

specify the location where the new object will be placed on the device. It does this by

first calling the SendObjectInfo operation. The parameters of the SendObjectInfo

operation may contain the StorageID of the storage on the device on which the Initiator

wishes to place the object and the Object Handle of the desired parent of this object (that

is, the folder into which the object shall be placed).

Following the successful execution of the SendObjectInfo operation, the SendObject

operation shall be the next operation to be sent to the receiving device, which will initiate

the transfer of the data portion of the object. The intent is that the SendObjectInfo

operation will provide all the required information to determine whether the object will

be able to be successfully stored by the receiving device, so when the SendObject

operation begins, it will have a high probability of success, and the receiver will know in

advance how to handle the incoming object.

If the sending device provides a StorageID in the SendObjectInfo operation, the

receiving device shall determine whether the specified storage and parent object can be

used to locate the object on the device once it is received.

This requires that the receiving device test the following conditions in this order:

1. If the receiving device does not permit the target destination to be specified at all,

it shall alert the sending device by sending a

Specification_of_Destination_Unsupported failure response.

2. The StorageID passed shall refer to an actual storage currently present in the

device.

3. The storage referred to shall have an access capability that allows write-access.

4. The storage referred to must have sufficient free space to contain the object to be

sent. The size (in bytes) of the object to be sent is given in the ObjectInfo dataset

passed in the data phase of the SendObjectInfo operation.

5. The parent object passed in the second parameter shall identify a valid object

handle of an Association on the device.

Revision 1.1 April 6
th

, 2011 66

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

6. Any other conditions required for the successful execution of the SendObject

operation shall then be tested, and an appropriate response sent in the case of an

expected failure.

The receiving device may choose to not support the specification of a target destination

on the device for a variety of reasons. When this is indicated by the appropriate failure

code, sent as a response to a SendObjectInfo operation that specifies a particular

StorageID/Parent Object, the Initiator shall then attempt the process again without

specifying a desired destination on the device, allowing the receiving device to specify

the location of the object.

Revision 1.1 April 6
th

, 2011 67

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix A – Object Formats

A.1 Object Format Summary Table

Name Datacode Description

Undefined *0x3000 Undefined object

Association 0x3001 Association (for example, a folder)

Script 0x3002 Device model-specific script

Executable 0x3003 Device model-specific binary executable

Text 0x3004 Text file

HTML 0x3005 Hypertext Markup Language file (text)

DPOF 0x3006 Digital Print Order Format file (text)

AIFF 0x3007 Audio clip

WAV 0x3008 Audio clip

MP3 0x3009 MPEG-1 Layer III audio (ISO/IEC 13818-3)

AVI 0x300A Video clip

MPEG 0x300B Video clip

ASF 0x300C Microsoft Advanced Streaming Format (video)

Undefined

Image

0x3800 Undefined image object

EXIF/JPEG 0x3801 Exchangeable File Format, JEIDA standard

TIFF/EP 0x3802 Tag Image File Format for Electronic Photography

FlashPix 0x3803 Structured Storage Image Format

BMP 0x3804 Microsoft Windows Bitmap file

CIFF 0x3805 Canon Camera Image File Format

Undefined 0x3806 Reserved

GIF 0x3807 Graphics Interchange Format

JFIF 0x3808 JPEG File Interchange Format

CD 0x3809 PhotoCD Image Pac

PICT 0x380A Quickdraw Image Format

PNG 0x380B Portable Network Graphics

Undefined 0x380C Reserved

TIFF 0x380D Tag Image File Format

TIFF/IT 0x380E Tag Image File Format for Information Technology (graphic arts)

JP2 0x380F JPEG2000 Baseline File Format

JPX 0x3810 JPEG2000 Extended File Format

Undefined

Firmware

0xB802

Windows

Image

Format

0xB881

WBMP 0xB803 Wireless Application Protocol Bitmap Format (.wbmp).

image/vnd.wap.wbmp

Revision 1.1 April 6
th

, 2011 68

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

http://www.wapforum.org/what/technical/SPEC-WAESpec-

19990524.pdf

JPEG XR 0xB804 JPEG XR, also known as HD Photo (.hdp, jxr, .wpd). image/vnd.ms-

photo.

ISO/IEC 29199-2:2009

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.ht

m?csnumber=51609

Undefined

Audio

0xB900 Undefined audio object

WMA 0xB901 Windows Media Audio

OGG 0xB902

AAC 0xB903 Advanced Audio Coding (.aac). audio/aac. MPEG-4 AAC.

Audible 0xB904

FLAC 0xB906 Free Lossless Audio Codec

QCELP 0xB907 Qualcomm Code Excited Linear Prediction (.qcp). audio/qcelp

AMR 0xB908 Adaptive Multi-Rate audio codec (.amr). audio/amr

Undefined

Video

0xB980 Undefined video object

WMV 0xB981 Windows Media Video

MP4

Container

0xB982 ISO 14496-1

MP2 0xB983 MPEG-1 Layer II audio (ISO/IEC 13818-3)

3GP

Container

0xB984 3GPP file format. Details: http://www.3gpp.org/ftp/Specs/html-

info/26244.htm (page title - “Transparent end-to-end packet switched

streaming service, 3GPP file format”).

3G2 0xB985 3GPP2 format (.3g2). video/3gpp2, audio/3gpp2

http://www.3gpp2.org/Public_html/specs/C.S0050-B_v1.0_070521.pdf

AVCHD 0xB986 MPEG-4 AVC video and Dolby Digital audio within an MPEG-2

Transport Stream as constrained by the AVCHD format specification

http://www.avchd-info.org/

ATSC-TS 0xB987 MPEG-2 video and AC-3 audio within an ATSC-compliant MPEG-2

Transport Stream

DVB-TS 0xB988 MPEG-2 video and MPEG-1 Layer II or AC-3 audio within a DVB-

compliant MPEG-2 Transport Stream

Undefined

Collection

0xBA00

Abstract

Multimedia

Album

0xBA01

Abstract

Image

Album

0xBA02

Abstract 0xBA03

http://www.wapforum.org/what/technical/SPEC-WAESpec-19990524.pdf
http://www.wapforum.org/what/technical/SPEC-WAESpec-19990524.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51609
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51609
http://www.3gpp.org/ftp/Specs/html-info/26244.htm
http://www.3gpp.org/ftp/Specs/html-info/26244.htm
http://www.3gpp2.org/Public_html/specs/C.S0050-B_v1.0_070521.pdf

Revision 1.1 April 6
th

, 2011 69

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Audio Album

Abstract

Video Album

0xBA04

Abstract

Audio &

Video

Playlist

0xBA05

Abstract

Contact

Group

0xBA06

Abstract

Message

Folder

0xBA07

Abstract

Chaptered

Production

0xBA08

Abstract

Audio

Playlist

0xBA09

Abstract

Video

Playlist

0xBA0A

Abstract

Mediacast

0xBA0B For use with mediacasts; references multimedia enclosures of RSS

feeds or episodic content

WPL Playlist 0xBA10

M3U Playlist 0xBA11

MPL Playlist 0xBA12

ASX Playlist 0xBA13

PLS Playlist 0xBA14

Undefined

Document

0xBA80

Abstract

Document

0xBA81

XML

Document

0xBA82

Microsoft

Word

Document

0xBA83

MHT

Compiled

HTML

Document

0xBA84

Microsoft

Excel

spreadsheet

0xBA85

Revision 1.1 April 6
th

, 2011 70

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

(.xls)

Microsoft

Powerpoint

presentation

(.ppt)

0xBA86

Undefined

Message

0xBB00

Abstract

Message

0xBB01

Undefined

Bookmark

0xBB10

Abstract

Bookmark

0xBB11

Undefined

Appointment

0xBB20

Abstract

Appointment

0xBB21

vCalendar

1.0

0xBB22

Undefined

Task

0xBB40

Abstract

Task

0xBB41

iCalendar 0xBB42

Undefined

Note

0xBB60

Abstract

Note

0xBB61

Undefined

Contact

0xBB80

Abstract

Contact

0xBB81

vCard 2 0xBB82

vCard 3 0xBB83

Notes:

M4A – unambiguous definition for MP4 files containing MPEG-4 Audio (as used by

iTunes, cellphone music services etc.)

M4V – unambiguous definition for MP4 files containing MPEG-4 AVC video together

with MPEG-4 audio (as used by iTunes, cellphone music services etc.)

Revision 1.1 April 6
th

, 2011 71

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

M4V_EAC3 – definition for MP4 files containing MPEG-4 AVC video together with

Enhanced AC-3 audio, an emerging format for online content distribution (supported by

DECE, DVB, emerging CE, PC and mobile media players)

AVCHD – definition to support the AVCHD format found on an increasing number of

consumer camcorders and digital cameras

ATSC-TS – definition to support MPEG-2 Transport streams from ATSC OTA services

as used in the US, Korea and other territories, and supported by many CE and PC media

players

DVB-TS - definition to support MPEG-2 Transport streams from DVB services as used

in Europe, Australia and other territories, and supported by many CE and PC media

players

DVB-TS-AVC - definition to support MPEG-2 Transport streams containing MPEG-4

AVC video and Enhanced AC-3 audio from DVB services as used in emerging HD

services in Europe (e.g. mandatory HD broadcast format in France, UK, Spain,. Italy)

Revision 1.1 April 6
th

, 2011 72

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix B – Object Properties

B.1 Object Property Summary Table

MTP Name MTP Datacode

StorageID 0xDC01

Object Format 0xDC02

Protection Status 0xDC03

Object Size 0xDC04

Association Type 0xDC05

Association Desc 0xDC06

Object File Name 0xDC07

Date Created 0xDC08

Date Modified 0xDC09

Keywords 0xDC0A

Parent Object 0xDC0B

Allowed Folder Contents 0xDC0C

Hidden 0xDC0D

System Object 0xDC0E

Persistent Unique Object Identifier 0xDC41

SyncID 0xDC42

Property Bag 0xDC43

Name 0xDC44

Created By 0xDC45

Artist 0xDC46

Date Authored 0xDC47

Description 0xDC48

URL Reference 0xDC49

Language-Locale 0xDC4A

Copyright Information 0xDC4B

Source 0xDC4C

Origin Location 0xDC4D

Date Added 0xDC4E

Non-Consumable 0xDC4F

Corrupt/Unplayable 0xDC50

ProducerSerialNumber 0xDC51

Representative Sample Format 0xDC81

Representative Sample Size 0xDC82

Representative Sample Height 0xDC83

Representative Sample Width 0xDC84

Representative Sample Duration 0xDC85

Representative Sample Data 0xDC86

Width 0xDC87

Height 0xDC88

Duration 0xDC89

Rating 0xDC8A

Track 0xDC8B

Genre 0xDC8C

Revision 1.1 April 6
th

, 2011 73

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Credits 0xDC8D

Lyrics 0xDC8E

Subscription Content ID 0xDC8F

Produced By 0xDC90

Use Count 0xDC91

Skip Count 0xDC92

Last Accessed 0xDC93

Parental Rating 0xDC94

Meta Genre 0xDC95

Composer 0xDC96

Effective Rating 0xDC97

Subtitle 0xDC98

Original Release Date 0xDC99

Album Name 0xDC9A

Album Artist 0xDC9B

Mood 0xDC9C

DRM Status 0xDC9D

Sub Description 0xDC9E

Is Cropped 0xDCD1

Is Colour Corrected 0xDCD2

Image Bit Depth 0xDCD3

Fnumber 0xDCD4

Exposure Time 0xDCD5

Exposure Index 0xDCD6

Total BitRate 0xDE91

Bitrate Type 0xDE92

Sample Rate 0xDE93

Number Of Channels 0xDE94

Audio BitDepth 0xDE95

Scan Type 0xDE97

Audio WAVE Codec 0xDE99

Audio BitRate 0xDE9A

Video FourCC Codec 0xDE9B

Video BitRate 0xDE9C

Frames Per Thousand Seconds 0xDE9D

KeyFrame Distance 0xDE9E

Buffer Size 0xDE9F

Encoding Quality 0xDEA0

Encoding Profile 0xDEA1

Display Name 0xDCE0

Body Text 0xDCE1

Subject 0xDCE2

Priority 0xDCE3

Given Name 0xDD00

Middle Names 0xDD01

Family Name 0xDD02

Prefix 0xDD03

Suffix 0xDD04

Phonetic Given Name 0xDD05

Phonetic Family Name 0xDD06

Revision 1.1 April 6
th

, 2011 74

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Email Primary 0xDD07

Email Personal 1 0xDD08

Email Personal 2 0xDD09

Email Business 1 0xDD0A

Email Business 2 0xDD0B

Email Others 0xDD0C

Phone Number Primary 0xDD0D

Phone Number Personal 0xDD0E

Phone Number Personal 2 0xDD0F

Phone Number Business 0xDD10

Phone Number Business 2 0xDD11

Phone Number Mobile 0xDD12

Phone Number Mobile 2 0xDD13

Fax Number Primary 0xDD14

Fax Number Personal 0xDD15

Fax Number Business 0xDD16

Pager Number 0xDD17

Phone Number Others 0xDD18

Primary Web Address 0xDD19

Personal Web Address 0xDD1A

Business Web Address 0xDD1B

Instant Messenger Address 0xDD1C

Instant Messenger Address 2 0xDD1D

Instant Messenger Address 3 0xDD1E

Postal Address Personal Full 0xDD1F

Postal Address Personal Line 1 0xDD20

Postal Address Personal Line 2 0xDD21

Postal Address Personal City 0xDD22

Postal Address Personal Region 0xDD23

Postal Address Personal Postal Code 0xDD24

Postal Address Personal Country 0xDD25

Postal Address Business Full 0xDD26

Postal Address Business Line 1 0xDD27

Postal Address Business Line 2 0xDD28

Postal Address Business City 0xDD29

Postal Address Business Region 0xDD2A

Postal Address Business Postal Code 0xDD2B

Postal Address Business Country 0xDD2C

Postal Address Other Full 0xDD2D

Postal Address Other Line 1 0xDD2E

Postal Address Other Line 2 0xDD2F

Postal Address Other City 0xDD30

Postal Address Other Region 0xDD31

Postal Address Other Postal Code 0xDD32

Postal Address Other Country 0xDD33

Organization Name 0xDD34

Phonetic Organization Name 0xDD35

Role 0xDD36

Birthdate 0xDD37

Message To 0xDD40

Revision 1.1 April 6
th

, 2011 75

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Message CC 0xDD41

Message BCC 0xDD42

Message Read 0xDD43

Message Received Time 0xDD44

Message Sender 0xDD45

Activity Begin Time 0xDD50

Activity End Time 0xDD51

Activity Location 0xDD52

Activity Required Attendees 0xDD54

Activity Optional Attendees 0xDD55

Activity Resources 0xDD56

Activity Accepted 0xDD57

Activity Tentative 0xDD58

Activity Declined 0xDD59

Activity Reminder Time 0xDD5A

Activity Owner 0xDD5B

Activity Status 0xDD5C

Owner 0xDD5D

Editor 0xDD5E

Webmaster 0xDD5F

URL Source 0xDD60

URL Destination 0xDD61

Time Bookmark 0xDD62

Object Bookmark 0xDD63

Byte Bookmark 0xDD64

Last Build Date 0xDD70

Time to Live 0xDD71

Media GUID 0xDD72

Revision 1.1 April 6
th

, 2011 76

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2 Object Property Descriptions

B.2.1 StorageID

This property represents the storage on which this object exists. If the removal or

formatting of a storage would cause this object to be corrupted or removed, this property

shall identify the storage upon which this object depends, even if it does not have a

binary component. This property must contain the same value as the first field of the

ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 4 UINT32 0xDC01

Datatype 2 4 UINT32 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.2 Object Format

The object format code describes this object. For more information about object format

codes see section 4, "Object Formats".

This property must contain the same value as the second field of the ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC02

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.3 Protection Status

This property identifies the write-protection status of the binary component of the data

object. Read-only protection may modified with the SetObjectProtection operation if

allowed by the device. Read-only protection may not be modified by mechanisms used

to set Object Properties.

Revision 1.1 April 6
th

, 2011 77

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The allowed values for this property for a device shall be enumerated in ObjectPropDesc

dataset and are defined as follows:

Value Description

0x0000 No Protection

This object has no protection, it may be modified/deleted arbitrarily,

and its properties may be modified freely.

0x0001 Read-only

This object cannot be deleted or modified, and all properties of this

object cannot be modified by the initiator. (Properties may be

modified by the device which contains the object however.)

0x8002 Read-only data

This object’s binary component cannot be deleted or modified,

however any object properties may be modified if allowed by the

object property constraints.

0x8003 Non-transferrable data

This object’s properties may be read and modified, and it may be

moved or deleted on the device, but this object’s binary data may not

be retrived from the device using a GetObject operation.

0x0002-0x7FFF Reserved for PTP

0x8004-0x8BFF Reserved for MTP

0x8C00-0xFFFF MTP Vendor Extension Range

This property may be indirectly set using the legacy SetObjectProtection operation, as

well as the usual mechanisms used to set Object Properties.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC03

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 78

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.4 Object Size

This property provides the size of the binary component of the object, in bytes. It must be

identical to the value contained in the fourth field of the ObjectInfo dataset

(ObjectCompressedSize), unless it is greater than the maximum size of that field.

When applied to an object that does not have a defined object size (such as an abstract

object without a data component or an object created on demand) this property shall

contain 0x00000000.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC04

Datatype 2 2 UINT16 0x0008 (UINT64)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x0000000000000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 79

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.5 Association Type

This property defines the association type of the object. It only applies to objects that

have an object format value of 0x3001 (Association). In general, MTP only requires the

use of 0x0001. If this object is not an association, the property shall have a value of

0x0000.

The FORM fields of this property's Object Property Description dataset shall contain an

enumeration of allowed values for this property, and may include:

0x0000 Undefined

This value indicates that this association has no known folder type.

0x0001 Generic Folder

This property defines the association type of the object. It only applies to objects that

have an object format value of 0x3001 (Association). In general, MTP requires only the

use of 0x0001. If this object is not an association, the property shall have a value of

0x0000.

This property must contain the same value as the field 13 of the ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC05

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 80

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.6 Association Desc

This property provides additional information about Association objects, and its meaning

is different for each different Association type.

The most common use of this field is to identify an association as an MTP-compliant

hierarchical folder by setting the value to 0x00000001. This indicates that this

Association contains references to each object "contained" in it.

If this object is not an Association, this property shall either not be supported for the

object, or the value of this property must be set to 0x00000000.

This property must contain the same value as the field 14 of the ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC06

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 81

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.7 Object File Name

This property identifies the file name of the object. It does not have to be human-

readable, and may or may not reference the actual file name of the object on the device.

The value of this property shall not contain path information.

The FORM fields of the object property description dataset for this property are used to

further define the file names which may be used to identify files on the device. If this

value is a null string, it is assumed that any string may be placed in this property.

Some examples of common regular expressions that might be used for a device include

the following (no guarantee is made for correctness; these examples are provided as-is

only):

Strings containing only alphanumeric characters:

[a-zA-Z0-9]*

Strings not containing the “\” or “/” characters:

[^\\/]*

FAT12/FAT16 compatible file names:

[a-zA-Z!#\$%&'\(\)\-0-9@\^_\`\{\}\~][a-zA-Z!#\$%&'\(\)\-0-9@\^_\`\{\}\~]{0,7}\.[[a-

zA-Z!#\$%&'\(\)\-0-9@\^_\`\{\}\~][a-zA-Z!#\$%&'\(\)\-0-9@\^_\`\{\}\~]{0,2}]?

The value of this property must be identical to the value of field 16 of the ObjectInfo

dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC07

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 82

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.8 Date Created

This property contains the date and time when the object was created. This does not refer

to the date when the object was originally authored, but rather to the date when this

particular binary object was first created (for example, an audio file generated from a CD

would contain the date and time when the file was generated, not when the work was

performed or written).

The value of this property must be identical to the value of the seventeenth field of the

ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC08

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.9 Date Modified

This property contains the date and time when the object was last altered. If this property

is supported, it shall be updated to the current time whenever an object’s binary

component, properties, or references are updated.

The value of this property must be identical to the value of the eighteenth field of the

ObjectInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC09

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

Revision 1.1 April 6
th

, 2011 83

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.10 Keywords

This property defines a string containing a list of keywords associated with the object,

each separated by a ‘ ‘ character.

The value of this property must be identical to the value of field 19 of the ObjectInfo

dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC0A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.11 Parent Object

If this object exists in a hierarchy, this property will contain the object handle of the

parent of this object. Only objects of type Association may be identified in this field. If

this object is in the root or the device does not support associations, this field shall be set

to 0x00000000.

Devices cannot be moved by updating this property. They must be moved using the

MoveObject operation.

The value of this property must be identical to the value of field 12 of the ObjectInfo

dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC0B

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 84

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.12 Allowed Folder Contents

This property may only be supported for objects with an object format type of

Association and which represent Generic Folders.

In many cases, a folder object may have a restriction on the contents allowed to be placed

in that folder. If this is the case, this property shall be used to indicate this restriction to

the Initiator. This property contains an array of datacodes representing the content types

which may be placed immediately within the folder to which this property is attached.

This does not restrict the entire hierarchy of objects contained by this folder, only the

objects which may exist immediately within this folder object. If nested folders may be

placed in this folder, that shall be indicated by including the Object Format Type for

Association (0x3001) in the array for this folder. If the content of a folders contained

within this folder must be restricted as well, that folder shall contain its own restriction

and represent that through this property on the nested folder.

If there is no restriction on the contents of a folder (beyond the overall device restriction

as indicated in the DeviceInfo dataset), the value of property shall be an empty array.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC0C

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 85

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.13 Hidden

This property identifies whether an object is intended to be displayed to a user, or

whether it is intended to be hidden and used only by applications. An object which is

identified as hidden should only be hidden from users browsing the contents of a device

through a friendly user interface, and only at the discretion of the displaying application.

Objects which are hidden should never be hidden from other applications.

This property is not to be used to hide items from an initiator. If a responder does not

wish to expose an object to applications on an initiator, it must not enumerate the object

at all through MTP.

Valid values of this property are defined as follows:

0x0000 This object is intended to be visible to users.

0x0001 This object is intended to be hidden from non-technical users.

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC0D

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 86

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.14 System Object

This property identifies whether an object is a system file, and is required for property

functioning of a device (or a core application on a device). An object which is identified

as a system file may be exposed or manipulated differently by applications on a PC, but

no explicit restrictions are placed on the use of a system file by MTP. It is suggested that

system files be excluded from automated synchronization processes and hidden from

non-technical users.

Valid values of this property are defined as follows:

0x0000 This object is intended to be visible to users.

0x0001 This object is intended to be hidden from non-technical users.

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC0E

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 87

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.15 Persistent Unique Object Identifier

This property is set by the responder and cannot be altered by the initiator. As long as this

object is present on the device, it must contain the same persistent unique object

identifier, and it shall be the only object with that identifier. Every effort must be made to

ensure that no persistent unique object identifier value is ever re-used on the device.

The primary purpose of this property is to ensure that an initiator that repeatedly

establishes sessions with the device can know which objects it has previously enumerated

or acquired.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC41

Datatype 2 2 UINT16 0x000A (UINT128)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x0…0

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.16 SyncID

This property is set by the initiator, and shall not be altered by the responder.

This property is opaque to the responder and is intended to allow an initiator to retain

state between sessions without retaining a catalogue of connected device content. (This is

particularly useful in sync-server scenarios – remembering that there should be one of

these for each distinct Intiator.)

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC42

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 88

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.17 Property Bag

In many cases, an initiator wants to save an object property associated with an object that

is not supported by the responder. In those cases, the initiator may update the

Property_Bag value with that information.

The Property_Bag is a property which contains a collection of properties in an XML

document. It is not expected to be understood by the responder, but the contents shall be

preserved and returned to an initiator upon request.

The schema for this XML file is outside of the scope of this document.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC43

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.18 Name

This property contains the name of the object. In many cases this will overlap with other

properties, such as File Name, and can be seen as a consistently available, unique,

human-readable identifier.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC44

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 89

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.19 Created By

This property identifies the application, user, or organization that originally created the

binary object to which this property applies. This property is not intended to identify the

person who created the intellectual property contained within this object; that information

is intended to be contained in the Artist property (0xDD06).

If this object was created on the device, this field is intended to contain some

combination of the "Manufacturer" and "Model" fields of the DeviceInfo dataset, or

alternatively the value contained in the "DeviceFriendlyName" device property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC45

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.20 Artist

This property identifies the person or people who originally created this object. In cases

where the object to which this property applies is an artistic work, this property identifies

the creators of that work. In cases where the object to which this property applies is a

document, this property identifies the author. Etc.

This property differs from the CreatedBy property in that it always identifies a person.

This property and the CreatedBy property may often contain the same value.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC46

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 90

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.21 Date Authored

This property contains the date and time when the content in this object was originally

created. In cases when the object to which this property applies is an artistic work, this

property implies the date when that work was created.

The Date Authored and Date Created properties may contain the same value.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC47

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.22 Description

This property contains a human-readable description of the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC48

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 91

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.23 URL Reference

This property contains a reference to a URL for this object. The location linked to is not

defined by this protocol.

The FORM fields of this property may contain a Regular Expression limiting this field to

valid HTML addresses, as follows:

((http:)?/{0,2}([^/\?#\[\];:&=\+\$,]*\.)+([^/\?#\[\];:&=\+\$,]{2,3}))(/[^<>])*

or it may contain a null string to indicate that the value is not used or validated.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC49

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 92

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.24 Language-Locale

This property identifies the language of this object. If multiple languages are contained in

this object, it shall identify the primary language (if any).

This property may contain either a language code, as defined in ISO-639, such as:

“en”

“ja”

It may also contain a language-country code, which consists of a language code of two or

three characters as defined in the ISO-639 standard, followed by a hyphen, then followed

by a country code as defined in ISO-3166, such as:

“en-US”

“ja-JP”

The FORM fields of this property may contain a Regular Expression limiting this field to

valid Language-Locales, such as:

[a-zA-Z]{2,3}(-[a-zA-Z]{2})?

or it may contain a null string to indicate that the value is not used or validated.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.25 Copyright Information

This property contains the copyright information for the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4B

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 93

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.26 Source

This property contains the source of this object. In general, this is not intended to identify

an individual or organization. For audio files, this is intended to contain the collection

from which the work was retrieved (generally the album name).

This property may overlap with the Artist and CreatedBy properties for some object

formats, and is intended to be implemented only if those two properties are insufficient or

inapplicable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 94

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.27 Origin Location

This property contains the origin location for this object.

There are many ways to identify a location. The method used shall be represented by

using a regular expression in the FORM field of the Object Property Description dataset,

which must describe the desired location format. However, given the generality of

FORM regular expressions, this spec does not intend that Initiators and Reponders will be

able to determine the precise method in use by examining the FORM field alone.

Some example regular expressions:

ISO-3166 country code:

[A-Z]{2}

WGS-84 GPS location (String):

[NS] [1-9][0-9]{0,2}d [1-9][0-9]?,[0-9]{1,9}m [EW] [1-9][0-9]{0,2}d [1-9][0-9]?,[0-

9]{1,9}m

WGS-84 GPS location (decimal):

[1-9][0-9]{1,2}\.[0-9]{1,9} [1-9][0-9]{1,2}\.[0-9]{1,9}

If the FORM field contains a null string, it indicates that any human-readable string may

be placed in this field (such as City/Country name).

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4D

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 95

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.28 Date Added

This property identifies the time and date when this object was added to the device, as

identified by the internal clock on the device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.29 Non-Consumable

This property determines whether or not this object is intended to be consumed by the

device, or whether it has been placed on the device just for storage. If this property is not

present, all data is assumed to be intended for consumption.

If this property is supported, it must be supported for all objects on the device.

The allowed values for this property are identified in the FORM fields of the Object

Property Description dataset, and must contain the values 0x00 and 0x01. A value of

0x00 indicates that the object is intended for consumption, and a value of 0x01 indicates

that it shall simply be stored. If a vendor-specific extension is defined which extends the

allowed values of this property, it shall use only values with a most significant bit of 1.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC4F

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 96

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.30 Corrupt/Unplayable

This property identifies an object on the device that should be able to be understood, but

for some reason, cannot be played. This should not be applied to objects which are non-

consumable. This property may only be set by the device as a result of failing to consume

the data portion of an object.

The allowed values for this property are 0x00 and 0x01. A value of 0x01 indicates that

the object is corrupt or unplayable. If a vendor-specific extension is defined which

extends the allowed values of this property, it shall use only values with a most

significant bit of 1.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC50

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 0x00

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.31 ProducerSerialNumber

This property identifies the unique serial number of the device which originally created

the binary object to which this property applies.

If this object was created by this device, this field shall contain the contents of the Serial

Number field of the DeviceInfo datase.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC51

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 97

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.32 Representative Sample Format

This property identifies the object format of the representative sample for the object,

using an MTP Object Format Type datacode.

The FORM fields in the Object Property Description dataset shall indicate the supported

Representative Sample format types for a given object format type in an enumeration.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC81

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.33 Representative Sample Size

This property identifies the size in bytes of the representative sample for this object.

The FORM fields in the Object Property Description dataset shall indicate the supported

sizes of Representative Samples of this object format type in a Range FORM.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC82

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 98

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.34 Representative Sample Height

This property identifies the height of the representative sample for the object in pixels.

The FORM fields in the Object Property Description dataset shall indicate the supported

heights of Representative Samples of this object format type in a Range FORM.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC83

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

B.2.35 Representative Sample Width

This property identifies the width of the representative sample for the object in pixels.

The FORM fields in the Object Property Description dataset shall indicate the supported

widths of Representative Samples of this object format type in a Range FORM.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC84

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 99

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.36 Representative Sample Duration

This property identifies the duration of the representative sample for the object in

milliseconds.

The FORM fields in the Object Property Description dataset shall indicate the supported

durations of Representative Samples of this object format type in a Range FORM.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC85

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

B.2.37 Representative Sample Data

This property contains a representative sample of the object to which it applies.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC86

Datatype 2 2 UINT16 0x4002 (AUINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x06 ByteArray form

Revision 1.1 April 6
th

, 2011 100

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.38 Width

This property identifies the width of an object in pixels.

The FORM fields in the Object Property Description dataset shall indicate the supported

widths of objects of this format type in a Range FORM.

If this property is read-only, it must be calculated by the device based on the object when

requested. If this property is read-write, the device may return the default value

(0x00000000) when it has not yet extracted the correct value from the object, and may

allow the value to be set in by the initiator (though it shall correct the value, when

possible, if the value set by the initiator is incorrect).

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC87

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 101

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.39 Height

This property identifies the height of an object in pixels.

The FORM fields in the Object Property Description dataset shall indicate the supported

heights of objects of this format type in a Range FORM.

If this property is read-only, it must be calculated by the device based on the object when

requested. If this property is read-write, the device may return the default value

(0x00000000) when it has not yet extracted the correct value from the object, and may

allow the value to be set in by the initiator (though it shall correct the value, when

possible, if the value set by the initiator is incorrect).

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC88

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 102

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.40 Duration

This property identifies the duration of an object in milliseconds.

The FORM fields in the Object Property Description dataset shall indicate the supported

durations of objects of this format type in a Range FORMLESS.

If this property is read-only, it must be calculated by the device based on the object when

requested. If this property is read-write, the device may return the default value

(0x00000000) when it has not yet extracted the correct value from the object, and may

allow the value to be set in by the initiator (though it shall correct the value, when

possible, if the value set by the initiator is incorrect).

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC89

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 Range formless

B.2.41 Rating

This property contains the value of rating for the object, as set by a user. This represents a

rating of how much this object is appreciated (such as a “star” rating from 1 to 5 stars),

and does not identify a maturity rating (such as R or PG-13).

The user rating is always exchanged as a value from 1 to 100. If the user rating has not

been set, it shall have a value of 0. The FORM fields of the Object Property Description

dataset for this property shall identify a range from 0 to 100 with a step-size of 1.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8A

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 103

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.42 Track

This property identifies the track on which this object is found on its distribution media.

It primarily applies to objects which are also distributed on optical media, such as CDs

and DVDs, and generally is set by the initiator. A value of 0x0000 (default value)

indicates that it is not in use, so track numbers shall be 1-based.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8B

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.43 Genre

This property identifies the genre of this object. This genre may be any human-readable

genre-describing string, and generally must be set by the initiator.

The device shall indicate the list of supported genres in an enumeration FORM in the

Object Property Description dataset. If the enumeration contains a null string (or the

device does not contain an enumeration FORM in the Object Property Description

dataset), this indicates that any human-readable string identifying genre may be placed in

this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 104

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.44 Credits

This property identifies credits for the object. The format of these credits shall be simple

text and the value is generally set by the initiator.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8D

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.45 Lyrics

This property contains the lyrics or script of the property. The format of these lyrics shall

be simple text and the value is generally set by the initiator.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8E

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 105

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.46 Subscription Content ID

This property provides additional information to identify a piece of content relative to an

online subscription service. It is generally set by the initiator and is a specific format.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If no specific subscription service is supported, or there is no

constraint on the subscription identifier value, this regular expression may be a null

string, indicating that any string is supported. Alternatively, the regular expression may

be ".*", indicating that all strings are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC8F

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.47 Produced By

This property identifies the person or organization that produced this work. It primarily

applies to audio and video content, and is generally set by the initiator.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC90

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 106

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.48 Use Count

This property identifies the number of times this object has been played or viewed.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC91

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.49 Skip Count

This property identifies the number of times this object was set up to be played, but

manually skipped by the user. It is intended to be used to infer a rating for an object or to

modify content update rules.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC92

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 107

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.50 Last Accessed

This property contains the date and time when this object was last viewed, accessed, or

otherwise used, relative to a device's onboard clock. It may be set by the initiator when an

object exists both on the device and on the initiator and consistency is desired, and it shall

be updated on the device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC93

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.51 Parental Rating

This property identifies the parental rating assigned to this object. The purpose of this

property is to identify objects that may not be appropriate to be viewed or heard by

minors.

The contents of this field are intended to be human-readable, but may be further defined

in the future to facilitate machine interpretation.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC94

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 108

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.52 Meta Genre

This property further qualifies a piece of media in a contextual way.

The device shall identify supported metagenre values in an Enumeration in the FORM

fields of the Object Property Description dataset.

The following values are defined:

0x0000 Not Used

0x0001 Generic music audio file

0x0011 Generic non-music audio file

0x0012 Spoken-Word Audio Book Files

0x0013 Spoken-Word Files (non-Audio book)

0x0014 Spoken-Word News

0x0015 Spoken-Word Talk Shows

0x0021 Generic video file

0x0022 News video file

0x0023 Music video file

0x0024 Home video file

0x0025 Feature Film video file

0x0026 Television Show video file

0x0027 Training/Educational video file

0x0028 Photo montage video file

0x0030 Generic non-audio, non-video

0x0040 Audio Mediacast

0x0041 Video Mediacast

0x0042 Mixed-media Mediacast

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC95

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 109

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.53 Composer

This property identifies the composer when the composer is not the artist who performed

it. It applies primarily to musical works, but can be applied to any created performance.

This property may often overlap with the "created by" and "artist" properties.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC96

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.54 Effective Rating

This property contains an assigned rating for an object. This rating is not set by the user,

but is generated based upon usage statistics (such as usecount or skipcount), or set by an

external authority. This represents a rating of how much this object is appreciated.

The effective rating is always exchanged as a value from 1 to 100. If the effective rating

has not been set, it shall have a value of 0. The FORM fields of the Object Property

Description dataset for this property shall identify a range from 0 to 100 with a step-size

of 1.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC97

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 110

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.55 Subtitle

This property further qualifies the title when the title is ambiguous or general, such as

when the title describes a series and the subtitle represents an episode title, or when the

title describes a larger work and the subtitle describes an act or contained performance.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC98

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.56 Original Release Date

This property contains the date and time when this object was originally released. It

applies to video works broadcast on television and audio works broadcast on radio, as

well as work released on physical media.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC99

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

Revision 1.1 April 6
th

, 2011 111

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.57 Album Name

If an object has been distributed as part of an album, the album which contained it shall

be identified by this property. If this object is contained in an Album on the device, this

property shall be identical to the "Name" property on the album object which contains the

object to which this property is applied.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC9A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.58 Album Artist

When an object was distributed in an album, the album artist (or artists) may differ from

the artist who created the work in question. If this object is applied to an Album on the

device, this property shall be identical to the "Artist" property on the album object which

contains the object to which this property is applied.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC9B

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 112

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.59 Mood

This property describes the "Mood" of the object. This differs from Genre and Metagenre

in implementation, and allows greater specificity and usage. The device shall indicate

which moods it supports in the enumeration form fields in the Object Property

Description dataset for this property. If the device supports arbitrary values, it shall

contain a null string in the enumeration.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC9C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.60 DRM Status

This property identifies the digital rights manangement (DRM) status of the object, and

exists independently of any particular DRM scheme implemented in an MTP extension

set. The purpose of this property is to expose in a DRM-agnostic way whether a data

object will be playable after being transferred to a different device.

Valid values of this property are defined as follows:

0x0000 This object has no DRM protection.

0x0001 This object has DRM protection.

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC9D

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 113

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.61 Sub Description

This property further qualifies the description when the main description is ambiguous or

general, such as when the description describes a series and the subdescription represents

an episode synopsis, or when the description describes a larger work and the

subdescription describes an act or contained performance.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDC9E

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.62 Is Cropped

This property generally applies only to image formats. It signals whether the file has been

cropped. The purpose of this property is to prevent multiple devices from automatically

cropping the same image in post-processing.

Valid values of this property are defined as follows:

0x0000 This image has not been cropped.

0x0001 This image has been cropped.

0x0002 This image has not been cropped, and shall not be cropped.

All other values where Bit 15 is 0 Reserved for MTP

All other values where Bit 15 is 1 MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD1

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 114

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.63 Is Colour Corrected

This property generally only applies to image formats. It indicates whether the file has

been color corrected. The purpose of this property is to prevent multiple devices from

automatically colour correcting the same image in post-processing.

Valid values of this property are defined as follows:

0x0000 This image has not been color corrected.

0x0001 This image has been color corrected.

0x0002 This image has not been color corrected, and shall not be color corrected.

All other values where Bit 15 is 0 Reserved for MTP

All other values where Bit 15 is 1 MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD2

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.64 Image Bit Depth

This property generally only applies to image formats, and identifies the identifies the bit

depth of an image.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD3

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

Revision 1.1 April 6
th

, 2011 115

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.65 Fnumber

This object property identifies the aperture setting of the lens at the time when this object

was captured. This property contains the F-number scaled by 100.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD4

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.66 Exposure Time

This object property identifies the shutter speed of the device in seconds, scaled by

10,000, at the time when this object was captured.

Typically, a device supports discrete enumerated values for this property, which shall be

identified in an enumeration FORM, but continuous control over a range is possible.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD5

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

Revision 1.1 April 6
th

, 2011 116

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.67 Exposure Index

This object property identifies the film speed emulated on the digital camera at the time

when this object was captured. The settings of this property correspond to the ISO

designations (ASA/DIN).

Typically, a device supports discrete enumerated values for this property, which are

intended to be identified in an enumeration FORM, but continuous control over a range is

possible.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCD6

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

Revision 1.1 April 6
th

, 2011 117

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.68 Total BitRate

This object property specifies the total number of bits required to store one second of

audio, video, or combined audio and video content. For an audio file, this property has

the same value as the AudioBitRate object property. For a video file, this property has

the same value as the VideoBitRate object property. For a file that combines audio and

video, the value of this property is equal to the sum of the AudioBitRate and

VideoBitRate property values.

The FORM fields in the Object Property Description dataset are intended to identify

either a range or an enumeration of allowed values for the total bitrate, and indicate that

any object with a total bitrate outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE91

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

Revision 1.1 April 6
th

, 2011 118

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.69 Bitrate Type

This property further qualifies the bit rate of an audio/video object by identifying the type

of bitrate which is being measured.

The device shall identify supported values in an Enumeration in the FORM fields of the

Object Property Description dataset.

Valid values of this property are defined as follows:

0x0000 Unused

0x0001 Discrete

0x0002 Variable

0x0003 Free

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE92

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 119

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.70 Sample Rate

This property applies primarily to audio and video data, and describes the number of

times an analogue media selection was sampled per second during encoding.

The FORM fields in the Object Property Description dataset shall identify either a range

or an enumeration of allowed values for the total samplerate, and indicate that any object

with a samplerate outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE93

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

Revision 1.1 April 6
th

, 2011 120

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.71 Number Of Channels

This property identifies the number of channels of audio contained in an audio object.

The FORM fields in the Object Property Description dataset shall identify an

enumeration of allowed values for the number of channels, and indicate that any object

with a number of channels outside of this enumeration will not be playable.

Valid values of this property are defined as follows:

0x0000 Unused

0x0001 Mono (1 channel)

0x0002 Stereo (2 channels)

0x0003 2.1 channels

0x0004 3 channels

0x0005 3.1 channels

0x0006 4 channels

0x0007 4.1 channels

0x0008 5 channels

0x0009 5.1 channels

0x000A 6 channels

0x000B 6.1 channels

0x000C 7 channels

0x000D 7.1 channels

0x000E 8 channels

0x000F 8.1 channels

0x0010 9 channels

0x0011 9.1 channels

0x0012 5.2 channels

0x0013 6.2 channels

0x0014 7.2 channels

0x0015 8.2 channels

0x0016 9.2 channels

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE94

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 121

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.72 Audio BitDepth

This property identifies the audio bit depth of an audio object.

The FORM fields in the Object Property Description dataset shall identify an

enumeration of allowed values for the audio bit depth, and indicate that any object with

an audio bit depth outside of this range will not be playable. If the enumeration contains

an entry with a value of 0x00000000, it indicates that any bit depth will be accepted.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE95

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 122

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.73 Scan Type

This property identifies scan type used in this video object.

Valid values of this property are defined as follows:

0x0000 Unused

Unused

0x0001 Progressive

Indicates progressive frames.

0x0002 FieldInterleavedUpperFirst

Line interleaved Frames with the Upper field on the first line.

0x0003 FieldInterleavedLowerFirst

Line interleaved frames with the Lower field on the first line.

0x0004 FieldSingleUpperFirst

Fields are sent as independent samples. The field is indicated (on a per sample basis)

0x0005 FieldSingleLowerFirst

Fields are sent as independent samples. The field is indicated (on a per sample basis

0x0006 MixedInterlace

The content may contain a mix of interlaced modes

0x0007 MixedInterlaceAndProgressive

The content may contain a mix of interlaced and progressive modes.

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE97

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 123

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.74 Audio WAVE Codec

This property provides the WAVE Codec Tag for audio codecs as described in:

http://msdn2.microsoft.com/en-us/library/ms867195.aspx (page title: “Registered

FOURCC Codes and WAVE Formats”).

The FORM fields in the Object Property Description dataset shall identify an

enumeration of WAVE Codec Tags of allowed codecs for objects of this Object Format

Type, and indicate that any object encoded with a codc not in this codec enumeration will

not be playable. If the enumeration contains an entry with a value of 0x00000000, it

indicates that any codec will be accepted for this Object Format.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE99

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.75 Audio BitRate

This property applies to audio data (potentially contained in a video file), and describes

the total number of bits that one second of content will consume.

The FORM fields in the Object Property Description dataset shall identify either a range

or an enumeration of allowed values for the total audio bitrate, and indicate that any

object with a total audio bitrate outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9A

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

http://msdn2.microsoft.com/en-us/library/ms867195.aspx

Revision 1.1 April 6
th

, 2011 124

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.76 Video FourCC Codec

This property provides the FourCC Codec Tag for video codecs as described in:

http://msdn2.microsoft.com/en-us/library/aa904731.aspx (page title: “Registered

FOURCC Codes and WAVE Formats”).

The FORM fields in the Object Property Description dataset shall identify an

enumeration of FourCC Codec Tags of allowed codecs for objects of this Object Format

Type, and indicate that any object encoded with a codec not in this codec enumeration

will not be playable. If the enumeration contains an entry with a value of 0x00000000, it

indicates that any codec will be accepted for this Object Format.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9B

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.77 Video BitRate

This property applies to video data, and describes the total number of bits that one second

of content will consume.

The FORM fields in the Object Property Description dataset shall identify either a range

or an enumeration of allowed values for the total video bitrate, and indicate that any

object with a total video bitrate outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9C

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

http://msdn2.microsoft.com/en-us/library/aa904731.aspx

Revision 1.1 April 6
th

, 2011 125

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.78 Frames Per Thousand Seconds

This property identifies the number of frames in one second of video content. It is

represented in thousandths of a frame, so a value of 29.97 frames per second (such as

NTSC) would be represented by a value of 29970.

The FORM fields in the Object Property Description dataset shall identify the different

values for this property supported by the device for objects of this Object Format Type,

and indicate that any object encoded with a number of frames per thousand seconds not

identified by the FORM fields i this ataset will not be playable. The FORM fields of the

dataset may be either an enumeration or a range. If the enumeration contains an entry

with a value of 0x00000000, it indicates that any video content will be accepted

regardless of the number of frames per thousand seconds.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9D

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range-Form

0x02 Enumeration-Form

B.2.79 KeyFrame Distance

The Key Frame Distance determines the maximum spacing between key frames (I-

frames), and is specified in milliseconds.

The FORM fields in the Object Property Description dataset shall identify a range of

allowed values for the distance between key frames, and indicate that any object with a

spacing outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9E

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 126

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.80 Buffer Size

Buffer size is used to indicate the amount of buffering required by this object in order to

decode it.

The FORM fields in the Object Property Description dataset shall identify a range of

buffer sizes supported by the device, and indicate that any object requiring a buffer size

to decode outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDE9F

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

B.2.81 Encoding Quality

Media codecs often include a "quality" parameter, which is generally an integer value.

The meaning of this property is dependent upon the codec of the media object to which it

is applied.

The FORM fields in the Object Property Description dataset shall identify a range of

encoding qualities supported by the device, and indicate that any object encoded with a

quality outside of this range will not be playable.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDEA0

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 127

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.82 Encoding Profile

Media codecs may be encoded in accordance with a profile, which defines a particular

encoding algorithm or optimization process. The meaning of this property is dependent

upon the codec of the media object to which it is applied, and the device should

enumerate all valid values in a standard computer-readable format for each Object

Format supporting this property.

This property shall be used if the Profile information is required to decode the bitstream

of the encoded media. If “profile” is only used to identify a collection of encoding

parameters, those should instead be identified by the other appropriate MTP properties,

and this property would then become redundant.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDEA1

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.83 Display Name

This property identifies the display name for an object. The display name is the human-

readable string presented to a user which identifies an object in the on-device UI.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the display

name for a device, this regular expression may be a null string, indicating that any string

is supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCE0

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 128

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.84 Body Text

This property contains an abstract copy of the body text of an object. The meaning of

this property depends on the object format type of the object to which it is attached, but

generally represents a plain text or html representation of a primary text field of a binary

object. If this property contains HTML-formatted content, it shall have <HTML> at the

beginning of the property to indicate this.

Examples of this property include:

E-Mail body text

Document body text

Etc.

The length of this property may be limited by the MaxLength field in the LongString

FORM fields of the Object Property Description dataset describing this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCE1

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.85 Subject

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCE2

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 129

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.86 Priority

This property identifies the priority of an object. Object Priority is usually attached to an

e-mail or calendar/task item, but may be applied to any object for which the meaning can

be inferred by the device.

This property contains an integer which represents the identified priority of the object to

which this property is attached. The priority represented by the value of this property is

in descending ascending order, with a value of 1 being the highest possible priority, and

larger values becoming progressively lower priority as the priority value increases. A

value of '0' in the priority property of an object indicates that the priority is not in use or

has not been assigned, and is not a valid priority value.

All valid priorities for an object format type on a device shall be identified in an

enumeration form in the Object Property Description dataset for this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDCE3

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 130

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.87 Given Name

This property identifies the given name for a contact. In western culture, the given name

is the first name of the contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the given name

for a device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD00

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.88 Middle Names

This property identifies the middle names for a contact. If the contact has more than one

middle name, they shall all be in this property, separated by ' ' characters.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the middle

names for a device, this regular expression may be a null string, indicating that any string

is supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD01

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 131

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.89 Family Name

This property identifies the family name for a contact. In western culture, this is often

referred to as the "last" name.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the family name

for a device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD02

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.90 Prefix

This property identifies the prefix for a contact. In English, this includes prefixes such as

Mr., Ms., Rev., etc.

This property shall contain an Enumeration FORM in its Object Property Description

dataset which identifies the allowed values for this field. If there is no predefined set of

prefixes used by this device, the enumeration shall include an entry of a null string,

indicatng that any value may be used.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD03

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 132

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.91 Suffix

This property identifies the suffix for a contact. In English, this includes suffixes such as

MD, Sr., PhD., etc.

This property shall contain an Enumeration FORM in its Object Property Description

dataset which identifies the allowed values for this field. If there is no predefined set of

suffixes used by this device, the enumeration shall include an entry of a null string,

indicatng that any value may be used.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD04

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

B.2.92 Phonetic Given Name

This property identifies the phonetic given name for a contact. This corresponds to the

yomi reading of a Japanese name, or Pinyin reading of a Chinese name.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the phonetic

given name for a device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD05

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 133

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.93 Phonetic Family Name

This property identifies the phonetic family name for a contact. This corresponds to the

yomi reading of a Japanese name, or Pinyin reading of a Chinese name.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of the phonetic

family name for a device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD06

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 134

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.94 Email Primary

This property contains the primary e-mail address for a contact. If multiple e-mail

address properties are supported for a contact, this property may contain the same

contents as a more specific property.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of an e-mail

address for this device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

An example of a regular expression which may partially validate e-mail addresses is:

^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD07

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 135

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.95 Email Personal 1

This property contains the primary personal e-mail address for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of an e-mail

address for this device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

An example of a regular expression which may partially validate e-mail addresses is:

^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD08

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 136

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.96 Email Personal 2

This property contains a secondary personal e-mail address for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of an e-mail

address for this device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

An example of a regular expression which may partially validate e-mail addresses is:

^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD09

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 137

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.97 Email Business 1

This property contains the primary business e-mail address for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of an e-mail

address for this device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

An example of a regular expression which may partially validate e-mail addresses is:

^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 138

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.98 Email Business 2

This property contains the secondary business e-mail address for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of an e-mail

address for this device, this regular expression may be a null string, indicating that any

string is supported. Alternatively, the regular expression may be ".*", indicating that all

strings are supported.

An example of a regular expression which may partially validate e-mail addresses is:

^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0B

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 139

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.99 Email Others

This property identifies a list of additional e-mail addresses attributed to a contact.

This property shall contain a string structured as:

EMail 1 description,email 1;EMail 2 description,email 2;

Where "EMail description" is a string describing the address, and "email" is the e-mail

address itself (without whitespace). Neither the email description nor the email may

contain either the ',' or ';' character, those are strictly used for separation of values within

the string. No other restrictions may be placed on the format of either the e-mail

description or e-mail value.

An example of a valid value for this property is:

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0C

Datatype 2 2 UINT16 0x4003 (AINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 140

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.100 Phone Number Primary

This property contains the primary phone number for a contact. If multiple phone

number properties are supported for a contact, this property may contain the same

contents as a more specific property.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0D

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.101 Phone Number Personal

This property contains the primary personal phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 141

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.102 Phone Number Personal 2

This property contains the secondary personal phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD0F

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.103 Phone Number Business

This property contains the primary business phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD10

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 142

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.104 Phone Number Business 2

This property contains the secondary business phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD11

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.105 Phone Number Mobile

This property contains the primary mobile phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD12

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 143

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.106 Phone Number Mobile 2

This property contains the secondary mobile phone number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD13

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.107 Fax Number Primary

This property contains the primary fax number for a contact. If multiple fax number

properties are supported for a contact, this property may contain the same contents as a

more specific property.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD14

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 144

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.108 Fax Number Personal

This property contains the primary personal fax number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD15

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.109 Fax Number Business

This property contains the primary business fax number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD16

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 145

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.110 Pager Number

This property contains the primary pager number for a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a phone number

for this device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD17

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.111 Phone Number Others

This property identifies a list of additional phone numbers attributed to a contact.

This property shall contain a string structured as:

Phone number 1 description,phone number;Phone number 2 description,phone number 2;

Where "Phone number description" is a string describing the type of phone number, and

"phone number" is the phone number itself (without whitespace). Neither the description

nor the value may contain either the ',' or ';' character, which are strictly used for

separation of values within the string. No other restrictions may be placed on the format

of either the phone number description or value.

An example of a valid value for this property is:

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD18

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 146

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.112 Primary Web Address

This property contains the URL identifying the primary web address associated with a

contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

An example of a regular expression which may identfy valid URLs is:

((http:)?/{0,2}([^/\?#\[\];:&=\+\$,]*\.)+([^/\?#\[\];:&=\+\$,]{2,3}))(/[^<>])*

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD19

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 147

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.113 Personal Web Address

This property contains the URL identifying the personal web address associated with a

contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

An example of a regular expression which may identfy valid URLs is:

((http:)?/{0,2}([^/\?#\[\];:&=\+\$,]*\.)+([^/\?#\[\];:&=\+\$,]{2,3}))(/[^<>])*

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 148

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.114 Business Web Address

This property contains the URL identifying the business web address associated with a

contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

An example of a regular expression which may identfy valid URLs is:

((http:)?/{0,2}([^/\?#\[\];:&=\+\$,]*\.)+([^/\?#\[\];:&=\+\$,]{2,3}))(/[^<>])*

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1B

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 149

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.115 Instant Messenger Address

This property contains the primary instant messenger identifier associated with a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

If multiple instant messenger identifiers are supported on a single contact, the device may

use the Regular Expression field of the Object Property Description dataset to associate a

particular instant messenger property with an instant messenger host. In this case, the

regular expression shall restrict the value of this property to only those values which will

operate with that instant messenger host. If the device does this, it is recommended that

at least one instant messenger identifier accept arbitrary values.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 150

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.116 Instant Messenger Address 2

This property contains the secondary instant messenger identifier associated with a

contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

If multiple instant messenger identifiers are supported on a single contact, the device may

use the Regular Expression field of the Object Property Description dataset to associate a

particular instant messenger property with an instant messenger host. In this case, the

regular expression shall restrict the value of this property to only those values which will

operate with that instant messenger host. If the device does this, it is recommended that

at least one instant messenger identifier accept arbitrary values.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1D

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

Revision 1.1 April 6
th

, 2011 151

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.117 Instant Messenger Address 3

This property contains the tertiary instant messenger identifier associated with a contact.

This property shall contain a Regular Expression FORM in its Object Property

Description dataset. If there is no constraint on the length or structure of a URL for this

device, this regular expression may be a null string, indicating that any string is

supported. Alternatively, the regular expression may be ".*", indicating that all strings

are supported.

If multiple instant messenger identifiers are supported on a single contact, the device may

use the Regular Expression field of the Object Property Description dataset to associate a

particular instant messenger property with an instant messenger host. In this case, the

regular expression shall restrict the value of this property to only those values which will

operate with that instant messenger host. If the device does this, it is recommended that

at least one instant messenger identifier accept arbitrary values.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x05 RegularExpression form

B.2.118 Postal Address Personal Full

This property identifies the full postal address for a contact. This is the address as it is

written, and contains no enforced formatting rules. The length of this property may be

limited by the MaxLength field in the LongString FORM fields of the Object Property

Description dataset describing this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD1F

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 152

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.119 Postal Address Personal Line 1

This property contains the first line of the personal postal address of this contact. In the

United States, this usually includes the street number and street name or post office box

number.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD20

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.120 Postal Address Personal Line 2

This property contains the first line of the personal postal address of this contact. In the

United States, this usually includes the apartment number, or a further qualification of the

address.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD21

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 153

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.121 Postal Address Personal City

This property contains the city of the personal postal address for this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD22

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.122 Postal Address Personal Region

This property contains the region of the personal postal address of this contact. In the

United States, this would identify the state.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD23

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.123 Postal Address Personal Postal Code

This property contains a personal country-specific postal code for this contact. In the

United States, this would be of the form 98052-8300.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD24

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 154

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.124 Postal Address Personal Country

This property contains the personal country of the postal address of this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD25

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.125 Postal Address Business Full

This property identifies the full business postal address for a contact. This is the address

as it is written, and contains no enforced formatting rules. The length of this property

may be limited by the MaxLength field in the LongString FORM fields of the Object

Property Description dataset describing this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD26

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 155

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.126 Postal Address Business Line 1

This property contains the first line of the business postal address of this contact. In the

United States, this usually includes the street number and street name or post office box

number.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD27

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.127 Postal Address Business Line 2

This property contains the first line of the business postal address of this contact. In the

United States, this usually includes the apartment number, or a further qualification of the

address.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD28

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 156

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.128 Postal Address Business City

This property contains the city of the business postal address for this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD29

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.129 Postal Address Business Region

This property contains the region of the business postal address of this contact. In the

United States, this would identify the state.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.130 Postal Address Business Postal Code

This property contains a business country-specific postal code for this contact. In the

United States, this would be of the form 98052-8300.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2B

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 157

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.131 Postal Address Business Country

This property contains the country of the business postal address of this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.132 Postal Address Other Full

This property identifies an extra full postal address for a contact. This is the address as it

is written, and contains no enforced formatting rules. The length of this property may be

limited by the MaxLength field in the LongString FORM fields of the Object Property

Description dataset describing this property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2D

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 158

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.133 Postal Address Other Line 1

This property contains the first line of an extra postal address of this contact. In the

United States, this usually includes the street number and street name or post office box

number.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.134 Postal Address Other Line 2

This property contains the first line of an extra postal address of this contact. In the

United States, this usually includes the apartment number, or a further qualification of the

address.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD2F

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 159

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.135 Postal Address Other City

This property contains the city of an extra postal address for this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD30

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.136 Postal Address Other Region

This property contains the region of an extra postal address of this contact. In the United

States, this would identify the state.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD31

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.137 Postal Address Other Postal Code

This property contains an extra country-specific postal code for this contact. In the

United States, this would be of the form 98052-8300.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD32

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 160

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.138 Postal Address Other Country

This property contains the country of an extra postal address of this contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD33

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.139 Organization Name

This property identifies the primary organization to which a contact belongs. For many

contacts, this maty be the name of the company at which they are employed.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD34

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 161

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.140 Phonetic Organization Name

This property identifies the phonetic name of the primary organization to which a contact

belongs. For many contacts, this maty be the name of the company at which they are

employed.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD35

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.141 Role

This property identifies the role, position or job title of a contact. An example is

"Software Engineer".

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD36

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 162

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.142 Birthdate

This property identifies the birthdate of a contact.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD37

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.143 Message To

This property identifies a list of addresses to which a message has been (or is intended to

be) sent. This property shall contain a single string with a semicolon-delimited list of

recipients, the type of recipient dependent on the type of message. For example, the

Message To property of an e-mail object would contain a semicolon-delimited list of e-

mail addresses. The Message To property of an SMS object would contain a semicolon-

delimited list of phone numbers.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD40

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 163

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.144 Message CC

This property identifies a list of addresses to which a message has been (or is intended to

be) copied to. Recipients who are "copied" on a message are those not directly addressed

by the message. The specific usage of the "CC" field is dependent on the type of object

to which this property is attached.

This property shall contain a single string with a semicolon-delimited list of copied

recipients, the type of recipient dependent on the type of message. For example, an e-

mail object would contain a semicolon-delimited list of e-mail addresses in this property.

An SMS may contain a semicolon-delimited list of phone numbers.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD41

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 164

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.145 Message BCC

This property identifies a list of addresses to which a message has been (or is intended to

be) blind copied to. Recipients who are "blind copied" on a message are those who

receive a message, but who are not identified in the message recieved by any other

recipients. The specific usage of the "BCC" field is dependent on the type of object to

which this property is attached.

This property shall contain a single string with a semicolon-delimited list of blind copied

recipients, the type of recipient dependent on the type of message. For example, an e-

mail object would contain a semicolon-delimited list of e-mail addresses in this property.

An SMS may contain a semicolon-delimited list of phone numbers.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD42

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.146 Message Read

This property identifies whether a message object has been read.

Valid values of this property are defined as follows:

0x0000 This message has been read/viewed.

0x0001 This message has not been read/viewed.

All other values where Bit 15 is 0 are reserved for MTP

All other values where Bit 15 is 1 are the MTP Vendor Extension range

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD43

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 165

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.147 Message Received Time

This property identifies the date and time when this message object was received by the

intended recipient, relative to the device which received it.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD44

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.148 Message Sender

This property identifies the sender of a message, in such a format that it is recognizable

as a valid recipient of a message of the object format type of the object to which this

property is attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD45

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 166

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.149 Activity Begin Time

This property identifies the date and time on which an activity (appointment, meeting,

task, etc.) begins, relative to the device clock.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD50

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

B.2.150 Activity End Time

This property identifies the date and time on which an activity (appointment, meeting,

task, etc.) ends, relative to the device clock.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD51

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

Revision 1.1 April 6
th

, 2011 167

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.151 Activity Location

This property identifies the location where an activity (appointment, meeting, task, etc.)

is planned to occur in a human-readable string.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD52

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.152 Activity Required Attendees

This property contains a list of required attendees for an activity (appointment, meeting,

task, etc.). This list must be a semicolon-delimited list of recipients identified in a way

appropriate to the object type to which this property is attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD54

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 168

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.153 Activity Optional Attendees

This property contains a list of optional attendees for an activity (appointment, meeting,

task, etc.). This list must be a semicolon-delimited list of recipients identified in a way

appropriate to the object type to which this property is attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD55

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.154 Activity Resources

This property contains a list of resources required for an activity (appointment, meeting,

task, etc.), usually identifying a reserved meeting room or A/V equipment. This list must

be a semicolon-delimited list of recipients identified in a way appropriate to the object

type to which this property is attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD56

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 169

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.155 Activity Accepted

This property contains a list of invitees for an activity (appointment, meeting, task, etc.)

who have accepted an invitation. This list must be a semicolon-delimited list of

recipients identified in a way appropriate to the object type to which this property is

attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD57

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.156 Activity Tentative

This property contains a list of invitees for an activity (appointment, meeting, task, etc.)

who have tentatively accepted an invitation. This list must be a semicolon-delimited list

of recipients identified in a way appropriate to the object type to which this property is

attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD58

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

Revision 1.1 April 6
th

, 2011 170

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.157 Activity Declined

This property contains a list of invitees for an activity (appointment, meeting, task, etc.)

who have declined an invitation. This list must be a semicolon-delimited list of

recipients identified in a way appropriate to the object type to which this property is

attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD59

Datatype 2 2 UINT16 0x4004 (AUINT16)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000 (Empty Array)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0xFF LongString form

B.2.158 Activity Reminder Time

This property identifies the date and time a reminder should be issued to a user to alert

them to an upcoming activity (appointment, meeting, task, etc), relative to the device

which received it.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5A

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x03 DateTime form

Revision 1.1 April 6
th

, 2011 171

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.159 Activity Owner

This property identifies the owner of an activity (appointment, meeting, task, etc.) in a

human-readable string formatted in a manner which is appropriate for the object format

type of the object to which this property is attached.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5B

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.160 Activity Status

This property identifies the current human-readable status of an activity (appointment,

task, meeting, etc.).

Possible values include:

"In progress"

"Not yet begun"

"50% complete"

etc.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5C

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 172

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.161 Owner

This property identifies the intellectual property owner of a particular piece of content,

mediacast, etc.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5D

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.162 Editor

This property identifies the human editor of the content.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 173

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.163 Webmaster

This property identifies the email address of the webmaster of the website or service that

provided the content. Examples include the webmaster of a mediacast feed or the

webmaster of a music provider.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD5F

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.164 URL Source

This property identifies the URL of the source of the content. Examples include the URL

of a mediacast or the URL of a music provider’s website.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD60

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 174

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.165 URL Destination

This property identifies a URL associated with a piece of content. Examples include the

URL of lyrics to a song or biography of an artist.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD61

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.166 Time Bookmark

This property specifies a bookmark (in milliseconds) that corresponds to the last position

played or viewed on the given media. During playback, this property will change

frequently, and those changes should not result in ObjectPropChanged events unless they

are caused by actions that are external to both the current session and the regular

playback of the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD62

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 175

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.167 Object Bookmark

This property identifies the object handle of the current object in a collection of objects.

Examples include the current object in a mediacast or playlist. During playback, this

property will change frequently, and those changes should not result in

ObjectPropChanged events unless they are caused by actions that are external to both the

current session and the regular playback of the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD63

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.168 Byte Bookmark

This property specifies a bookmark (in bytes) that corresponds to the last position played

or viewed on the given media. During playback, this property will change frequently, and

those changes should not result in ObjectPropChanged events unless they are caused by

actions that are external to both the current session and the regular playback of the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD64

Datatype 2 2 UINT16 0x0008 (UINT64)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000000000000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 176

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.169 Last Build Date

This property specifies a date the last time an object was changed or edited. An example

is when a series in a mediacast was changed or edited.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD70

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

B.2.170 Time to Live

This property specifies the time, in minutes, until the next content update. An example is

the time until a mediacast feed should be updated with new content.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD71

Datatype 2 2 UINT16 0x0008 (UINT64)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x0000000000000000

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 177

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

B.2.171 Media GUID

This property identifies a unique number or string that is assigned by the initiator. This

number is not associated with the PUID, which is generated by the device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xDD71

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-defined

DefaultValue 4 0x00 (Null String)

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 178

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Revision 1.1 April 6
th

, 2011 179

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix C – Device Properties

C.1 Device Property Summary Table

MTP Name MTP Datacode

Undefined 0x5000

Battery Level 0x5001

Functional Mode 0x5002

Image Size 0x5003

Compression Setting 0x5004

White Balance 0x5005

RGB Gain 0x5006

F-Number 0x5007

Focal Length 0x5008

Focus Distance 0x5009

Focus Mode 0x500A

Exposure Metering Mode 0x500B

Flash Mode 0x500C

Exposure Time 0x500D

Exposure Program Mode 0x500E

Exposure Index 0x500F

Exposure Bias Compensation 0x5010

DateTime 0x5011

Capture Delay 0x5012

Still Capture Mode 0x5013

Contrast 0x5014

Sharpness 0x5015

Digital Zoom 0x5016

Effect Mode 0x5017

Burst Number 0x5018

Burst Interval 0x5019

Timelapse Number 0x501A

Timelapse Interval 0x501B

Focus Metering Mode 0x501C

Upload URL 0x501D

Artist 0x501E

Copyright Info 0x501F

Synchronization Partner 0xD401

Device Friendly Name 0xD402

Volume 0xD403

SupportedFormatsOrdered 0xD404

DeviceIcon 0xD405

Playback Rate 0xD410

Playback Object 0xD411

Playback Container Index 0xD412

Session Initiator Version Info 0xD406

Perceived Device Type 0xD407

Revision 1.1 April 6
th

, 2011 180

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2 Device Property Descriptions

C.2.1 Undefined

This is not used

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5000

Datatype 2 2 UINT16 0x0000 (Undefined)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.2 Battery Level

The current battery level of a device is represented by the BatteryLevel property.

The battery level is indicated by an unsigned, read-only integer, and constrained by either

an Enumeration or Range of integers. The lowest value in the enumeration or range shall

indicate the state of having no battery power remaining, and the largest value shall

indicate a full battery. The enumeration or range of other allowed values indicate battery

levels at which a DevicePropChanged event shall triggered to indicate to the initiator that

that level has been reached, and must therefore not be chosen at too granular a level. A

value of 0 may used to indicate that the device has an alternate power source.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5001

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 181

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.3 Functional Mode

The current functional mode of a device may be retrieved and manipulated using this

property.

All devices must default to a standard mode. Non-standard modes generally indicate

support for a different level of functionality, either a reduced set (such as when in a sleep

state) or an advanced mode (such as when running off an alternative power source). The

definition of non-standard modes is dependent on the device. Any change in capability

caused by a change in the device’s functional mode shall be described in an updated

DeviceInfo dataset, and this change shall be communicated using a DeviceInfoChanged

event (which shall always be sent when device capabilities change.)

This property is described using an Enumeration and is exposed outside of sessions in the

corresponding field in the DeviceInfo dataset.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5002

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 182

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.4 Image Size

This property indicates and controls the height and width of images which are produced

or captured by the device.

The value of this property shall take the form of a Unicode, null-terminated string which

is structured as: “WxH”, where W represents the width of the image desired, and H

represents the height. Both the width and the height are represented by unsigned integers.

An example would be a value of “640x480” with a null terminator for the string, which

represents a width of 640 and a height of 480 pixels.

The allowed values of this property may be represented by either an Enumeration or a

Range form, depending on the capabilities of the device. Devices which can smoothly

scale image creation may choose to use a range form. A range form for this property

shall have as the minimum of the range a value which is the smallest image it can create,

and a maximum value of the largest image it can create, with a step value for each. An

example of a range implementation would be a Range form with a minimum value of

“1x1” (terminated by a null value), a maximum value of “1024x768” (terminated by a

null value) and a step of “1x1” (terminated by a null value) indicating that the image can

take any intermediate value.

If the device cannot process all possible image capture sizes in a range, it shall implement

this using an enumeration, which shall contain a list of all possible dimensions for

captured images.

Changing this property may cause the the Free Space In Objects field of the StorageInfo

dataset to be updated. When this occurs, the device is required to issue a

StorageInfoChanged event to indicate that this has occurred.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5003

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 183

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.5 Compression Setting

Objects captured by a device are generally not stored in their raw form, but are

compressed to save limited storage space. The Compression Setting property shall

indicate the level of compression in use by the device, and the range of values shall be as

close as possible to a linear represention of the perceived quality of the compressed

content. Smaller values indicate low quality and high compression, while large values

indicate high quality and low compression. This specification does not attempt to assign

specific values to this property with any absolute benchmarks, so this value is inherently

device and codec specific.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5004

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 184

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.6 White Balance

This property identifies how the device weights the different colour channels.

Valid values include:

0x0000 Undefined

0x0001 Manual

The white balance is set directly by using the RGB Gain property, described in section

C.2.7 "RGB Gain", and is static until changed.

0x0002 Automatic

The device attempts to set the white balance using some kind of automatic mechanism.

0x0003 One-push automatic

The user must press the capture button while pointing the device at a white field, at which

time the device determines the white balance setting.

0x0004 Daylight

The device attempts to set the white balance to a value that is appropriate for use in

daylight conditions.

0x0005 Florescent

The device attempts to set the white balance to a value that is appropriate for use in

conditions with a florescent light source.

0x0006 Tungsten

The device attempts to set the white balance to a value that is appropriate for use in

conditions with a tungsten light source.

0x0007 Flash

The device attempts to set the white balance to a value that is appropriate for flash

conditions.

All other values with Bit 15 set to zero are reserved for PTP

All other values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor

extensions

All other values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5005

Revision 1.1 April 6
th

, 2011 185

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

C.2.7 RGB Gain

This property is a Unicode, null-terminated string which represents the current RGB gain

setting of the device. This property is structured as “R:G:B”, where R represents the red

gain, G represents the green gain and B represents the blue gain. All the gain values are

represented by unsigned integers, up to a maximum of sixteen-bit unsigned integers. An

example value of “4:2:3” (terminated by a null value) indicates a gain value of 4 for red,

2 for green and 4 for blue. An example value of “2000:1000:1500” (terminated by a null

value) indicates a gain value of 2000 for red, 1000 for green and 1500 for blue. These

values are relative to each other, and therefore may take on any integer value less than

2^16.

This property may be constrained by either an Enumeration or a Range form. The

minimum value would represent the smallest numerical value (typically "1:1:1", null-

terminated). Using values of zero for a particular color channel would mean that color

channel would be dropped, so a value of "0:0:0" would result in images with all pixel

values being equal to zero. The maximum value would represent the largest value each

field may be set to (up to "65535:65535:65535", null-terminated), effectively determining

the setting's granularity by an order of magnitude per significant digit. The step value is

typically "1:1:1".

If a particular implementation desires the capability to enforce minimum and/or

maximum ratios, the green channel may be forced to a fixed value. An example of this

would be a minimum field of "1:1000:1", a maximum field of "20000:1000:20000" and a

step field of "1:0:1".

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5006

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 186

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.8 F-Number

This property identifies the aperture setting of the lens.

This property contains the F-number scaled by 100. When the device is set to capture

using an automatic exposure mode, the setting of this property may cause other properties

(such as Exposure Time and Exposure Index) to change. When that happens, the device

must issue a DevicePropChanged event to indicate the change. This property is typically

only able to be set when the device’s Exposure Program Mode property is set to Manual

or Aperture Priority.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5007

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

C.2.9 Focal Length

This property corresponds to the 35mm equivalent focal length in millimeters multiplied

by 100.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5008

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 187

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.10 Focus Distance

This property contains an unsigned integer corresponding to the focus distance in

millimeters. A value of 0xFFFF indicates a setting greater than 655 meters.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5009

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.11 Focus Mode

This property identifies the current focusing mode in use by the device for image capture.

Only the values in the following table are defined by this standard.

Valid values include:

0x0000 Undefined

0x0001 Manual

0x0002 Automatic

0x0003 Automatic Macro (close-up)

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500A

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 188

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.12 Exposure Metering Mode

This property identifies the current exposure metering mode in use by the device for

image capture. Only the values in the following table are defined by this standard.

Valid values include:

0x0000 Undefined

0x0001 Average

0x0002 Center-weighted-average

0x0003 Multi-spot

0x0004 Center-spot

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500B

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 189

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.13 Flash Mode

This property identifies the current flash mode in use by the device for image capture.

Only the values in the following table are defined by this standard.

Valid values include:

0x0000 Undefined

0x0001 Auto flash

0x0002 Flash off

0x0003 Fill flash

0x0004 Red-eye auto

0x0005 Red-eye fill

0x0006 External sync

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500C

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 190

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.14 Exposure Time

This property identifies the current shutter speed of the device in seconds, scaled by

10,000. If the device is set to an automatic exposure program mode, setting this property

through SetDeviceProp may cause other properties to change. When that happens, the

device must issue a DevicePropChanged event to indicate the change. This property is

typically only able to be set when the device’s Exposure Program Mode property is set to

Manual or Shutter Priority.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500D

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 191

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.15 Exposure Program Mode

This property allows the exposure program mode settings of the device, corresponding to

the "Exposure Program" tag within an EXIF or a TIFF/EP image file, to be constrained

by a list of allowed exposure program mode settings supported by the device.

Valid values include:

0x0000 Undefined

0x0001 Manual

0x0002 Automatic

0x0003 Aperture Priority

0x0004 Shutter Priority

0x0005 Program Creative (greater depth of field)

0x0006 Program Action (faster shutter speed)

0x0007 Portrait

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500E

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 192

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.16 Exposure Index

This property can be used by an image capture device to emulate film speed settings on a

digital camera. The settings of this property correspond to the ISO designations

(ASA/DIN). Typically, a device supports discrete enumerated values, but continuous

control over a range is possible. A value of 0xFFFF corresponds to automatic ISO setting.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x500F

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.17 Exposure Bias Compensation

This property allows the set point of an image capture device’s auto exposure control to

be identified and set.

This is a signed sixteen-bit integer, and represents a scaling factor.

A value of 0 will not change the factory set auto exposure level. The units of this

property represent “stops” scaled by a factor of 1000, which enables fractional stop

values. For example, a setting of 2000 indicates two stops of additional exposure (four

times more energy to the sensor and a brigher image). A setting of -1000 indicates one

stop less exposure (half the energy to the sensor and a darker image). The setting values

are expressed in APEX units (Additive system of Photographic Exposure). This property

may be constrained by an enumeration or a range.

This property is typically only used when the device has an Exposure Program Mode of

Manual.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5010

Datatype 2 2 UINT16 0x0003 (INT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 193

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.18 DateTime

This property identifies the current date and time settings of the device.

The value of this property follows the ISO standard format as described in ISO 8601

from the most significant number to the least significant number. This shall take the form

of a Unicode string in the format "YYYYMMDDThhmmss.s" where YYYY is the year,

MM is the month (01 to 12), DD is the day of the month (01 to 31), T is a constant

character, hh is the hours since midnight (00 to 23), mm is the minutes past the hour (00

to 59), and ss.s is the seconds past the minute, with the ".s" being optional tenths of a

second past the second.

This string can optionally be appended with Z to indicate UTC, or +/-hhmm to indicate

the time is relative to a time zone. Appending neither indicates the time zone is unknown.

This property shall not be constrained in the DevicePropDesc form fields, as the ISO

8601 specification already describes the allowed values.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5011

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 194

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.19 Capture Delay

This value describes the time delay which is to be be inserted between the triggering of

the image capture and the actual data capture.

This value is represented by an unsigned integer, which represents the capture delay in

milliseconds. This property does not describe the time between multiple frames of a burst

capture or capture time of a time-lapse capture, which are described by the Burst Interval

and Timelapse Interval properties respectively. In those cases it would still serve as an

initial delay before the first image in the series was captured, independent of the time

between frames. When no capture delay is desired, this property shall be set to zero.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5012

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 195

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.20 Still Capture Mode

This property identifies the type of still capture which will be performed by an image

capture initiation.

Valid values include:

0x0000 Undefined

0x0001 Normal

0x0002 Burst

0x0003 Timelapse

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5013

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

C.2.21 Contrast

This property identifies the perceived contrast of images captured by the device

This property be constrained by either an enumeration or range, with actual values being

relative. The smallest value allowed by the range or enumeration form represents the least

contrast, while the largest value represents the most contrast. A value in the middle of the

range shall be used to represent the normal (default) contrast.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5014

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 196

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.22 Sharpness

This property identifies the perceived sharpness of images captured by this device.

This property may be constrained by either an enumeration or a range. The minimum

value allowed by the range or enumeration form represents the least amount of sharpness,

while the largest value represents the most sharpness. A value in the middle of the range

shall be used to represent normal (default) sharpness.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5015

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.23 Digital Zoom

This property identifies the effective digital zoom which will be applied to an image

capture device’s acquired image, scaled by a factor of 10. When no digital zoom is

applied, the value of this property shall be equal to 10. A value of 20 indicates a zoom by

a factor of 2 (2X), where only ¼ of the possible scene is captured by the camera. This

property may be constrained by either an enumeration or a range, with the lowest value

indicating the minimum digital zoom (generally 10) and the largest value indicating the

maximum digital zoom which the device can apply.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5016

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 197

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.24 Effect Mode

This property allows the image capture device to specify special image acquisition

modes.

Valid values include:

0x0000 Undefined

0x0001 Standard (color)

0x0002 Black & White

0x0003 Sepia

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5017

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

C.2.25 Burst Number

This property identifies the number of images which the device will capture upon the

initiation of a burst capture operation.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5018

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 198

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.26 Burst Interval

This property identifies the time delay in milliseconds between subsequent image capture

operations in a burst capture operation.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x5019

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.27 Timelapse Number

This property indicates the number of images which will be captured when a time-lapse

capture is begun.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501A

Datatype 2 2 UINT16 0x0004 (UINT16)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

Revision 1.1 April 6
th

, 2011 199

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.28 Timelapse Interval

This property indicates the time delay in milliseconds between captures of a time-lapse

capture operation.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501B

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 Device-Defined

C.2.29 Focus Metering Mode

This property identifies the automatic-focus mechanism currently in use by the device.

All allowed values of this property shall be identified in an enumeration form of the

DevicePropDesc dataset.

Valid values include:

0x0000 Undefined

0x0001 Center-spot

0x0002 Multi-spot

All values with Bit 15 set to zero are reserved for PTP

All values with Bit 15 set to 1 and Bit 14 set to 0 are open for MTP vendor extensions

All values with Bit 15 set to 1 and Bit 14 set to 1 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501C

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 200

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.30 Upload URL

This property describes an Internet URL (Universal Resource Locator) which the initiator

may use to upload objects after they have been acquired from the device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501D

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

C.2.31 Artist

This property contains the name of the owner/operator of this device, and shall be used

by the device to populate the “Artist” property in any objects created on this device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501E

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 201

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.32 Copyright Info

This property contains the copyright notification which shall be used to populate the

“Copyright” property on any objects created by this device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0x501F

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

C.2.33 Synchronization Partner

This property gives a human-readable description of a synchronization partner for a

device. A synchronization partner can be either another device, a software application on

a device, or a server over the network. Typically, for a device to PC connection, this is

the name of the PC.

This property may also be used by a synchronization process to recognize that it is the

partner for this device, so that it may modify its behavior appropriately, but in doing so,

should assume that the property will need to be human-readable. This is because this

property may be exposed in UI in an operating system.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD401

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 202

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.34 Device Friendly Name

This property gives a human-readable description of the device, for use in an initiating

device’s user interface.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD402

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

C.2.35 Volume

This identifies (and is used to set) the current volume of the device, and is an unsigned

32-bit integer. The allowed values of this property device shall be identified by a range

form defined in the DevicePropDesc dataset defining this property. Values for this

property are always based at 0, and a value of 0 indicates that the device is muted.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD403

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x01 Range form

Revision 1.1 April 6
th

, 2011 203

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.36 SupportedFormatsOrdered

This property identifies whether a device is indicating its supported production &

consumption object formats in order of preference.

Valid values include:

0x00 Unordered

0x01 Ordered

All values with Bit 7 set to 1 are open for MTP vendor extensions

All values with Bit 7 set to 0 are reserved for MTP

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD404

Datatype 2 2 UINT16 0x0002 (UINT8)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

C.2.37 DeviceIcon

This property identifies a .ICO icon object that represents the device to an initiator. The

specification for a .ICO is located here: http://msdn2.microsoft.com/en-

us/library/ms997538.aspx (page title: “Icons in Win32”).

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD405

Datatype 2 2 UINT16 0x4002 (AUINT8)

Get/Set 3 1 UINT8 Device-Defined

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

http://msdn2.microsoft.com/en-us/library/ms997538.aspx
http://msdn2.microsoft.com/en-us/library/ms997538.aspx

Revision 1.1 April 6
th

, 2011 204

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.38 Playback Rate

This identifies the current speed of playback, identified linearly. It is a signed 32-bit

integer, which identifies the speed in thousandths. Thus, a value of 1000 indicates that

the playback shall proceed at full speed. A value of 500 indicates that playback shall be

at half-speed. A value of -1000 indicates that playback shall be in reverse at full speed.

A value of 0 indicates that the device is paused.

A complete list of allowed playback rates for an object shall be contained in an

enumeration of allowed values defined in the DevicePropDesc dataset defining this

property. This list shall always include the values 1000 and 0.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD410

Datatype 2 2 UINT16 0x0005 (INT32)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x02 Enumeration form

Revision 1.1 April 6
th

, 2011 205

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.39 Playback Object

This identifies the object currently being played back on the device, identified by Object

Handle. This property has two special values. A value of 0x00000000 indicates that the

device is currently stopped, and no media file is being consumed.

Devices which support playlist or album objects shall allow this property to contain a

reference to an album or playlist. If a device supports these object types, as well as

playback control, it must also support the Playback Container Index Device Property. If

this property contains an album or playlist object, it indicates that the device is currently

playing back the contents of that album or playlist.

Whenever the object being played back is updated on the device (due to the previous

object finishing playback, user input on the device, or active control on another active

session) the device shall indicate this by initiating a DevicePropChanged event for this

property.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD411

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 206

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.40 Playback Container Index

When playing content, the Playback Object device property may contain a container

object (album, playlist, etc.) rather than the actual object being consumed. In this case, it

is important to expose the specific object in that playback container which is being

consumed. The object being played is identified by its index within Object References

array of that playback container, and that index is contained in this property. Recall that

arrays in MTP are zero-based (so a value of 0x00000000 in this property indicates that

the first ObjectHandle in the Object References array is being consumed).

If the Playback Object does not represent a container object, this property shall always

contain a value of 0x00000000.

When the playback container index changes, such as during a song change, a

DevicePropChanged event shall be sent to notify the initiator.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD412

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

C.2.41 Playback Position

This identifies the current time offset of the object currently being played back in

milliseconds. During playback, this property will change frequently, and those changes

shall not result in DevicePropChanged events unless they are caused by actions external

to both the current session and the regular playback of the object.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD413

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

CurrentValue 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 207

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.42 Session Initiator Version Info

This property describes the version information of the session initiator. The value of this

property shall take the form of a Unicode, null-terminated string that is formatted as the

User Agent string in HTTP 1.1 spec (RFC 2068). The initiator shall set this device

property directly after GetDeviceInfo is called. This will give the device a chance to

adjust behavior before additional operations occur within the session. GetDeviceInfo is

called to determine if this property is supported by the device.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD406

Datatype 2 2 UINT16 0xFFFF (STRING)

Get/Set 3 1 UINT8 0x01 (Get/Set)

DefaultValue 4 Device-Defined

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

The following example shows a Windows OS version and a class driver version.

Example: “Windows/6.0.5330.0 MTPClassDriver/6.0.5330.0”

Revision 1.1 April 6
th

, 2011 208

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

C.2.43 Perceived Device Type

This property allows an Initiator to determine the device type of the Responder, as

perceived by the user. This property is intended to be used by the Initiator to graphically

represent the Responder; a Device Icon (0xD405) is intended to be preferred over

Perceived Device Type. Perceived Device Type may also be used to represent device

capabilities or functionality.

Value Perceived Device Type

0x00000000 Generic

0x00000001 Still Image/Video Camera

0x00000002 Media (Audio/Video) Player

0x00000003 Mobile Handset

0x00000004 Video Player

0x00000005 Personal Information Manager /

Personal Digital Assistant

0x00000006 Audio Recorder

All values with Bit 15 set to zero are reserved for MTP.

All values with Bit 15 set to 1 are open for MTP vendor extensions.

Field name Field

order

Size

(bytes)

Datatype Value

PropertyCode 1 2 UINT16 0xD407

Datatype 2 2 UINT16 0x0006 (UINT32)

Get/Set 3 1 UINT8 0x00 (GET)

DefaultValue 4 Device-Defined

GroupCode 5 4 UINT32 Device-defined

FormFlag 6 1 UINT8 0x00 None

Revision 1.1 April 6
th

, 2011 209

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix D – Operations

D.1 Operation Summary Table

Operation Name Operation Code

GetDeviceInfo 0x1001

OpenSession 0x1002

CloseSession 0x1003

GetStorageIDs 0x1004

GetStorageInfo 0x1005

GetNumObjects 0x1006

GetObjectHandles 0x1007

GetObjectInfo 0x1008

GetObject 0x1009

GetThumb 0x100A

DeleteObject 0x100B

SendObjectInfo 0x100C

SendObject 0x100D

InitiateCapture 0x100E

FormatStore 0x100F

ResetDevice 0x1010

SelfTest 0x1011

SetObjectProtection 0x1012

PowerDown 0x1013

GetDevicePropDesc 0x1014

GetDevicePropValue 0x1015

SetDevicePropValue 0x1016

ResetDevicePropValue 0x1017

TerminateOpenCapture 0x1018

MoveObject 0x1019

CopyObject 0x101A

GetPartialObject 0x101B

InitiateOpenCapture 0x101C

GetObjectPropsSupported 0x9801

GetObjectPropDesc 0x9802

GetObjectPropValue 0x9803

SetObjectPropValue 0x9804

GetObjectReferences 0x9810

SetObjectReferences 0x9811

Skip 0x9820

Revision 1.1 April 6
th

, 2011 210

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2 Operation Descriptions

D.2.1 GetDeviceInfo

This operation returns the DeviceInfo dataset, as defined in section 5.1.1 "DeviceInfo

Dataset Description." This dataset provides identifying information about the device,

such as model and serial number, as well as describing the capabilities of the device.

This operation is commonly the first operation called by an initiator upon connecting to a

responder for the first time.

Operation Code 0x1001

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data DeviceInfo dataset

Data Direction R->I

ResponseCode Options OK, Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This operation may be called outside of a session. When used outside a session, both the

SessionID and TransactionID in the OperationRequest dataset must be 0x00000000.

Revision 1.1 April 6
th

, 2011 211

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.2 OpenSession

This operation creates a new session for communication between the Initiator and

Responder. Sessions are described in more detail in section 4.4 “Sessions.” All

operations require a session to exist, unless otherwise specified.

Operation Code 0x1002

Operation Parameter 1 SessionID

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Parameter_Not_Supported, Invalid_Parameter,

Session_Already_Open, Device_Busy

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

If this operation is called and an active session has already been opened, a response of

Session_Already_Open shall be returned, and the first response parameter shall contain

the SessionID of the open session. This response shall also be returned if the session ID

passed in the first parameter is already in use in a different session. If the SessionID

passed in the first parameter is equal to 0x00000000, the operation shall fail and shall

return a response of Invalid_Parameter.

Revision 1.1 April 6
th

, 2011 212

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.3 CloseSession

This operation closes an active session. All stateful information pertaining to the session

being closed shall be discarded.

Operation Code 0x1003

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Session_Not_Open, Invalid_TransactionID,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 213

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.4 GetStorageIDs

This operation returns a list of StorageIDs of storages on this device. StorageIDs are

defined in more detail in section 5.2.1 “Storage IDs”.

Operation Code 0x1004

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data StorageID array

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Removable storages with no inserted media shall be returned in the dataset returned by

this operation as well, though they would contain a value of 0x0000 in the lower 16 bits

indicating that they are not present.

Revision 1.1 April 6
th

, 2011 214

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.5 GetStorageInfo

This operation returns the StorageInfo dataset for the storage identified by the StorageID

in the first parameter. The StorageInfo dataset is defined in section 5.2.2, “Storage Info

Dataset”.

Operation Code 0x1005

Operation Parameter 1 StorageID

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data StorageInfo dataset

Data Direction R->I

ResponseCode Options OK, Session_Not_Open, Invalid_TransactionID,

Access_Denied, Invalid_StorageID, Store_Not_Available,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 215

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.6 GetNumObjects

This operation returns the number of objects on the device, or the subset defined by the

first three parameters.

Operation Code 0x1006

Operation Parameter 1 StorageID

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 [ObjectHandle of Association for which number of children is

needed]

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_StorageID,

Store_Not_Available,

Specification_By_Format_Unsupported,

Invalid_Code_Format, Parameter_Not_Supported,

Invalid_ParentObject, Invalid_ObjectHandle,

Invalid_Parameter

Response Parameter 1 NumObjects

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter contains the StorageID of the storage for which the number of objects

is desired. A value of 0xFFFFFFFF may be used to indicate that an aggregated total

across all storages shall be returned. If a storage is specified and the storage is

unavailable, this operation shall return Store_Not_Available.

The second parameter is optional, and contains an Object Format datacode. Object

Formats are described in section 4, “Object Formats”. If the second parameter contains a

non-0x00000000 value, it specifies that a count of objects of a certain object format is

desired. If the parameter is not used, it shall contain a value of 0x00000000 and objects

shall be counted regardless of their object format. If this parameter is not supported, the

responder shall return a response code of Specification_By_Format_Unsupported.

Revision 1.1 April 6
th

, 2011 216

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The third parameter may be used to restrict the count of objects returned by this operation

to objects directly contained in a particular folder (Association). If this parameter

contains a non-0x00000000 value, the responder shall return a count of objects which

have as their ParentObject the folder (Association) identified by this parameter. If the

number of objects contained in the root of a storage is desired, a value of 0xFFFFFFFF

may be passed in this operation, indicating that only those objects with no ParentObject

(i.e., objects in the root of the storage) shall be returned. If the first parameter indicates

that all storages are included in this query, then a value of 0xFFFFFFFF shall return a

count of all objects at the root level of any storage. If this parameter is unused, it shall

contain a value of 0x00000000.

If the third parameter is unsupported and a non-0x00000000 value is sent in this

operation, a response of Parameter_Unsupported shall be returned. If the use of the third

parameter is supported, but the value contained does not reference an actual object on the

device, a response of Invalid_ObjectHandle shall be returned. If the use of the third

parameter is supported and it contains a valid Object Handle, but the object referenced is

not of type Association, then a response of Invalid_ParentObject shall be returned.

Revision 1.1 April 6
th

, 2011 217

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.7 GetObjectHandles

This operation returns an array of Object Handles referencing the contents of the device.

Operation Code 0x1007

Operation Parameter 1 StorageID

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 [ObjectHandle of Association or hierarchical folder for which

a list of children is needed]

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectHandle array

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_StorageID,

Store_Not_Available, Invalid_ObjectFormatCode,

Specification_By_Format_Unsupported,

Invalid_Code_Format, Invalid_ObjectHandle,

Invalid_Parameter, Parameter_Not_Supported,

Invalid_ParentObject, Invalid_ObjectHandle

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter contains the StorageID of the storage for which the list of Object

Handles is desired. A value of 0xFFFFFFFF may be used to indicate that a list of Object

Handles of all objects on all storages shall be returned. If a storage is specified and the

storage is unavailable, this operation shall return Store_Not_Available.

The second parameter is optional, and contains an Object Format datacode. Object

Formats are described in Appendix A – Object Formats. If the second parameter contains

a non-0x00000000 value, it specifies that a list of object handles referencing objects of a

certain object format is desired. If the parameter is not used, it shall contain a value of

0x00000000 and objects shall be included in the response dataset regardless of their

object format. If use of this parameter is not supported, and a non-zero value is passed,

the Responder shall return a response code of Specification_By_Format_Unsupported.

Revision 1.1 April 6
th

, 2011 218

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The third parameter may be used to restrict the list of objects returned by this operation to

objects directly contained in a particular folder (Association). If this parameter contains a

non-0x00000000 value, the responder shall return a list of objects which have as their

ParentObject the folder (Association) identified by this parameter. If the number of

objects contained in the root of a storage is desired, a value of 0xFFFFFFFF may be

passed in this operation, indicating that only those objects with no ParentObject are to be

returned. If the first parameter indicates that all storages are included in this query, then a

value of 0xFFFFFFFF shall return a list of all objects at the root level of all storages. If

this parameter is unused, it shall contain a value of 0x00000000.

If the third parameter is unsupported and a non-0x00000000 value is sent in this

operation, a response of Parameter_Unsupported shall be returned. If the use of the third

parameter is supported, but the value contained does not reference an actual object on the

device, a response of Invalid_ObjectHandle shall be returned. If the use of the third

parameter is supported and it contains a valid Object Handle, but the object referenced is

not of type Association, then a response of Invalid_ParentObject shall be returned.

D.2.8 GetObjectInfo

This operation returns the ObjectInfo dataset for the object identified by the Object

Handle in the first parameter. The ObjectInfo dataset is defined in section 5.3.1, “Object

Info Dataset”.

Operation Code 0x1008

Operation Parameter 1 ObjectHandle

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectInfo dataset

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Store_Not_Available, Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 219

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.9 GetObject

This object retrieves the binary data component of an object from the device. This will

generally be preceded by either a GetObjectInfo operation or GetObjectPropList

operation(s) to first identify the object’s type and descriptive information, but this is not

required.

Operation Code 0x1009

Operation Parameter 1 ObjectHandle

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data Object Binary Data

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Invalid_Parameter, Store_Not_Available,

Incomplete_Transfer, Access_Denied,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This object retrives the binary data component of an object from the device. This will

generally be preceeded by either a GetObjectInfo operation or GetObjectPropList

operation(s) to first identify the object’s type and descriptive information, but this is not

required.

Objects with no data component (having a binary size 0), such as associations or abstract

playlists cannot be retrieved with this operation.

If the object handle in the first parameter refers to a folder (Association) object, the

Responder shall respond with an Invalid_ObjectHandle response. If the object handle in

the first parameter does not refer to an object on the device, then the responder shall

respond with an Invalid_ObjectHandle response. If the first parameter references an

object which is not of type Association, but which has a size of 0, then this operation

shall succeed, and an object of size 0 shall be returned.

Revision 1.1 April 6
th

, 2011 220

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.10 GetThumb

This operation retrieves a thumbnail for an image object on the responder.

The Representative Sample object property may be used as a more flexible alternative for

devices which support object properties, but this operation must be supported for PTP-

compatibiliy.

Operation Code 0x100A

Operation Parameter 1 ObjectHandle

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ThumbnailData

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Thumbnail_Not_Present, Invalid_ObjectFormatCode,

Store_Not_Available, Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 221

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.11 DeleteObject

This operation deletes a data object from the responder.

Operation Code 0x100B

Operation Parameter 1 ObjectHandle

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Object_WriteProtected, Store_Read_Only, Partial_Deletion,

Store_Not_Available,

Specification_By_Format_Unsupported,

Invalid_Code_Format, Device_Busy,

Parameter_Not_Supported, Access_Denied

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter contains an object handle which references the object to be deleted.

Write-protected objects cannot be deleted by this operation. If the first parameter

contains a value of 0xFFFFFFFF, then all objects on the device able to be deleted shall be

deleted. If a value of 0xFFFFFFFF is passed in the first parameter, and some subset of

objects are not deleted (but at least one object is deleted), a response of Partial_Deletion

shall be returned. If the object handle in the first parameter does not reference a valid

object on the device, the responder shall return an Invalid_ObjectHandle response. If the

first parameter identifies an object on the responder, but the object is on a storage which

is read-only and does not allow deletion, then the response Store_Read_Only shall be

returned.

If the first parameter contains an object handle for a folder object (Association), then all

objects in that association shall be deleted. Any folder objects contained in that folder

shall also be deleted. If the first parameter contains a folder (Association) object, and

that folder contains an object which cannot be deleted, the parent folder of the object

which cannot be deleted shall also not be deleted.

Revision 1.1 April 6
th

, 2011 222

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The second parameter is optional, and contains an Object Format datacode. Object

Formats are described in section 4, “Object Formats”. If the second parameter contains a

non-0x00000000 value and the first parameter contains a value of 0xFFFFFFFF, it

specifies that all objects on the device of the object format specified in this parameter

shall be deleted. If the responder does not support this parameter and it contains a non-

0x00000000 value, it shall return a response code of

Specification_By_Format_Unsupported.

If all objects identified by the first two parameters are protected and cannot be deleted (as

identified by the ProtectionStatus field of the object’s ObjectInfo dataset or the

ProtectionStatus object poperty), a response code of Object_WriteProtected shall be

returned. If some, but not all, objects are successfully deleted, then a response code of

Partial_Deletion must always be returned.

Revision 1.1 April 6
th

, 2011 223

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.12 SendObjectInfo

This is the first operation sent when an initiator wishes to send a new object to a

responder. When objects are sent to a responder, the ObjectInfo dataset precedes the data

component to give the responder context for the transfer, allowing resources to be

allocated, and verifying to the initiator that the object should be able to be sent

successfully. This operation is usually followed by a SendObject operation, as described

in Appendix D.2.13 SendObject”. A successful completion of this operation indicates

that the responder is ready and able to receive the object described in the ObjectInfo

dataset.

Operation Code 0x100C

Operation Parameter 1 [Destination StorageID on responder]

Operation Parameter 2 [Parent ObjectHandle on responder where object shall be

placed]

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectInfo dataset

Data Direction I->R

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied, Invalid_StorageID,

Store_Read_Only, Object_Too_Large, Store_Full,

Invalid_ObjectFormatCode, Store_Not_Available,

Parameter_Not_Supported, Invalid_ParentObject,

Invalid_Dataset, Specification_Of_Destination_Unsupported

Response Parameter 1 Responder StorageID in which the object will be stored

Response Parameter 2 Responder parent ObjectHandle in which the object will be

stored

Response Parameter 3 Response Parameter3: responder’s reserved ObjectHandle for

the incoming object

Response Parameter 4 None

Response Parameter 5 None

The first parameter is optional, and indicates the store on the responder on which the

following object shall be stored. If this parameter is included and the responder cannot

place the described object in that store, this operation shall fail with a response code of

Store_Not_Available, Store_Read_Only or Store_Full. If the responder does not support

this parameter, a response code of Specification_Of_Destination_Unsupported shall be

returned. If this parameter contains a value of 0x00000000, the responder may choose on

which store it will save the object.

Revision 1.1 April 6
th

, 2011 224

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The second parameter is optional, and indicates the folder (Association) into which this

object shall be placed. If the second parameter contains a non-0x00000000 value, the

storage of that parent object must also be specified in the first parameter. If the responder

does not support the use of this parameter, it shall fail this operation with a response code

of Specification_Of_Destination_Unsupported. If an Initiator receives a response of

Specification_Of_Destination_Unsupported when specifying both the first and second

parameter, it may try again while specifying only the first parameter if desired. If the

object handle included in the second parameter does not reference a valid object on the

device, a response of Invalid_ObjectHandle shall be returned. If the object handle

included in the second parameter does not reference a folder (Association) object, the

responder shall return a value of Invalid_ParentObject.

If the responder cannot accept an object based upon information in the SendObjectInfo

dataset (where there is not already an appropriate response), such as an invalid filename,

the error code Invalid_Dataset shall be used.

If the initiator wishes to place an object in the root of a given storage, it shall indicate the

desired storage in the first parameter and include a value of 0xFFFFFFFF in the second

parameter.

Upon the successful completion of this operation, the responder shall be prepared to

receive a SendObject operation to receive the binary data for the specified object. If the

ObjectInfo dataset sent in the data phase of this operation indicates that the size in bytes

of the object to be sent is greater than 0, then the next operation called in the same

session is intended to be a SendObject operation. If the next operation sent in the same

session is not a SendObject operation, the responder shall not retain the sent or

ObjectInfo dataset. If the following SendObject operation does not successfully execute,

the ObjectInfo dataset passed in this operation shall be retained until the successful

completion of a SendObject operation.

An object handle issued during a successful SendObjectInfo or SendObjectPropList

operation should be reserved for the duration of the MTP session, even if there is no

successful SendObject operation for that handle.

If the ObjectInfo dataset sent in the data phase of this operation indicates that the object

to be sent has a size of 0, then a response of OK indicates that the object has been sent

successfully, and it is not required that this operation be followed by a SendObject

operation. However, the responder shall not fail if a SendObject operation follows

containing an object of size 0.

Object properties that are get-only (0x00 GET) shall accept values during object creation

from the SendObjectInfo operation.

Revision 1.1 April 6
th

, 2011 225

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.13 SendObject

This operation is used to send the binary content of an object to the device, and follows a

successful SendObjectInfo operation (as described in Appendix D.2.12 SendObjectInfo).

The data object sent in this operation must correspond to the ObjectInfo dataset

description sent in the preceeding SendObjectInfo.

Operation Code 0x100D

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data Object Binary Data

Data Direction I->R

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied, Invalid_StorageID,

Store_Read_Only, Object_Too_Large, Store_Full,

Invalid_ObjectFormatCode, Store_Not_Available,

Parameter_Not_Supported, Invalid_ParentObject

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

If this operation does not follow a successful SendObjectInfo operation in the same

session, a response of No_Valid_ObjectInfo shall be returned. If the target destination

does not contain sufficient free space for the object sent in the data phase of this

operation, a response of Store_Full shall be returned. If the object sent in the data phase

of this operation is larger than the size indicated in the ObjectInfo dataset sent in the

SendObjectInfo which precedes this operation, this operation shall fail and a response

code of Store_Full shall be returned.

If this operation completes successfully, any stored ObjectInfo dataset shall be discarded.

If this operation fails for any reason, the ObjectInfo dataset shall be retained and the

responder shall remain ready to receive the object.

If for any reason the data transfer fails during data transfer, the responder shall fail this

operation with a response code of Incomplete_Transfer.

Revision 1.1 April 6
th

, 2011 226

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.14 InitiateCapture

This operation indicates to the responder that it is to produce a new data object according

to its current device properties using an object capture mechanism enabled by the device.

Operation Code 0x100E

Operation Parameter 1 [StorageID]

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_StorageID, Store_Full,

Invalid_ObjectFormatCode, Invalid_Parameter,

Store_Not_Available, Invalid_Code_Format, Device_Busy,

Parameter_Not_Supported, Store_Read-Only

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter indicates the storage on which the captured object shall be stored.

The first parameter is optional, and if it is not used shall contain a value of 0x00000000.

If the first parameter does not contain 0x00000000 and the device cannot place the object

on the desired storage, the responder shall fail this operation with the appropriate

response code (Store_Not_Available, Invalid_StorageID, Store_Full).

The second parameter contains an ObjectFormatCode which indicates the format of the

object to be captured. If the second parameter contains a value of 0x00000000 it

indicates that the device shall capture an object in whatever format is the default for the

device.

Revision 1.1 April 6
th

, 2011 227

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The act of creating a new object in response to receiving this operation is asynchronous,

and does not occur immediately. An OK response to this operation indicates that the

responder accepts the command and will attempt to create a new object. The completion

of the capture shall be indicated by sending a Capture_Complete event. If the capture of

new object(s) does not fully complete successfully due to insufficient space on the target

storage, a Store_Full event shall be generated and a Capture_Complete event shall not.

An ObjectAdded event shall also be generated for each object which is created in the

execution of the new capture, and that event shall contain the TransactionID of the

InitiateCapture operation which triggered its creation. The device should not send any

other events during the capture session (other than ObjectAdded) until the

Capture_Complete event has been sent.

A separate operation, InitiateOpenCapture, described in section A.2.28, can be used to

support dynamically controlled captures that are terminable by the initiator.

Example Single Object InitiateCapture Sequence:

Initiator -> Responder: InitiateCapture Operation

Responder -> Initiator: InitiateCapture Response

Responder -> Initiator: ObjectAdded Event

Responder -> Initiator: CaptureComplete Event

Initiator -> Responder: GetObjectInfo Operation

Responder -> Initiator: ObjectInfo Dataset/Response

Example Multiple Object InitiateCapture Sequence

Initiator -> Responder: InitiateCapture Operation

Responder -> Initiator: InitiateCapture Response

Responder -> Initiator: ObjectAdded Event(1)

Responder -> Initiator: ObjectAdded Event(2)

. . .

Responder -> Initiator: ObjectAdded Event(n-1)

Responder -> Initiator: ObjectAdded Event(n)

Responder -> Initiator: CaptureComplete Event

Initiator -> Responder: GetObjectInfo Operation(1)

Responder -> Initiator: ObjectInfo Dataset/Response(1)

Initiator -> Responder: GetObjectInfo Operation(2)

Responder -> Initiator: ObjectInfo Dataset/Response(2)

. . .

Initiator -> Responder: GetObjectInfo Operation(n-1)

Responder -> Initiator: ObjectInfo Dataset/Response(n-1)

Initiator -> Responder: GetObjectInfo Operation(n)

Responder -> Initiator: ObjectInfo Dataset/Response(n)

Revision 1.1 April 6
th

, 2011 228

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.15 FormatStore

This operation formats the media contained in the storage identified by the StorageID in

the first parameter.

Operation Code 0x100F

Operation Parameter 1 StorageID

Operation Parameter 2 [FileSystem Format]

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_StorageID,

Store_Not_Available, Device_Busy,

Parameter_Not_Supported, Invalid_Parameter,

Store_Read_Only

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

If the storage in the first parameter cannot be formatted, the responder shall return the

appropriate response (Store_Read_Only, Invalid_StorageID, Store_Not_Available). If a

specified filesystem format is desired, the second parameter may contain a filesystem

type as defined in the StorageInfo dataset described in Section 5.2.2 “Storage Info

Dataset”.

If the device is unable to format the store due to concurrency issues, or due to a condition

which is known to be temporary, a response of Device_Busy shall be returned.

Revision 1.1 April 6
th

, 2011 229

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.16 ResetDevice

This operation signals to the device that it is to return to a default state.

Operation Code 0x1010

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Device_Busy

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This closes all open sessions. This does not affect the state of the device or its contents,

so all device properties and object properties shall remain unchanged following a device

reset.

If multiple sessions are open on the Responder when this operation is received, the

Responder shall send a DeviceReset event to all open sessions except the one in which

the ResetDevice operation was sent. These events must be sent prior to resetting.

Revision 1.1 April 6
th

, 2011 230

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.17 SelfTest

This operation directs the device to implement a device-specific self-test.

Operation Code 0x1011

Operation Parameter 1 [SelfTest Type]

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, SelfTest_Failed, Device_Busy,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter is used to indicate the type of self-test that shall be performed,

according to the following table.

Value Description

0x0000 Default device-specific self-test

All other values with Bit 15 set to 0 Reserved PTP

All values with Bit 15 set to 1 and Bit 14

set to 0

MTP Vendor Extension range

All values with Bit 15 set to 1 and Bit 14

set to 1

Reserved MTP

Revision 1.1 April 6
th

, 2011 231

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.18 SetObjectProtection

This operation sets the write-protection status for the data object referred to in the first

parameter to the value indicated in the second parameter.

Operation Code 0x1012

Operation Parameter 1 ObjectHandle

Operation Parameter 2 ProtectionStatus

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied,

Invalid_ObjectHandle, Invalid_Parameter,

Store_Not_Available, Parameter_Not_Supported,

Store_Read_Only

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

For a description of the ProtectionStatus field, refer to the ObjectInfo dataset described in

section 5.3.1 "ObjectInfo Dataset Description". If the ProtectionStatus field does not hold

a valid value, the ResponseCode shall be Invalid_Parameter.

Revision 1.1 April 6
th

, 2011 232

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.19 PowerDown

This operation instructs the device to close all active sessions and power down.

Operation Code 0x1013

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Device_Busy,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 233

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.20 GetDevicePropDesc

This operation returns the DevicePropDesc dataset identified by the DevicePropCode in

the first parameter.

Operation Code 0x1014

Operation Parameter 1 DevicePropCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data DevicePropDesc dataset

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied,

DeviceProp_Not_Supported, Device_Busy,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 234

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.21 GetDevicePropValue

This operation returns the current value of the device property indicated by the

DevicePropCode in the first parameter.

Operation Code 0x1015

Operation Parameter 1 DevicePropCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data DeviceProp Value

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, DeviceProp_Not_Supported,

Device_Busy, Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

For more information about device properties refer to section 5.1.2 . The

GetDevicePropDesc also returns this value contained in the DevicePropDesc dataset

returned by that operation, and when both are supported by a device either can be used.

Revision 1.1 April 6
th

, 2011 235

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.22 SetDevicePropValue

This operation sets the value of the device property identified by the DevicePropCode in

the first parameter.

Operation Code 0x1016

Operation Parameter 1 DevicePropCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data DeviceProp Value

Data Direction I->R

ResponseCode Options OK, Session_Not_Open, Invalid_TransactionID,

Access_Denied, DeviceProp_Not_Supported,

ObjectProp_Not_Supported, Invalid_DeviceProp_Format,

Invalid_DeviceProp_Value, Device_Busy,

Parameter_Not_Supported

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The property value must conform to the restrictions placed upon it by the device property

description dataset. Device property description datasets are defined in detail in section

5.1.2.1.

If the property cannot be set, the responder shall return a value of Access_Denied. If the

value is not in a range allowed by the device and described by the DevicePropDesc

dataset, the responder shall respond with Invalid_DeviceProp_Value. If the format or

simple type of the new device property value does not correspond with the types

specified in the DevicePropDesc dataset for this device property, a response of

Invalid_DeviceProp_Format shall be returned.

Revision 1.1 April 6
th

, 2011 236

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.23 ResetDevicePropValue

This operation sets the value of the device property identified by the DevicePropCode in

the first parameter to the default value.

Operation Code 0x1017

Operation Parameter 1 DevicePropCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, DeviceProp_Not_Supported,

Device_Busy, Parameter_Not_Supported, Access_Denied

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The default value for a device property is defined in the DevicePropDesc dataset for that

device property. DevicePropDesc datasets are described in section 5.1.2.1.

Attempting to Reset a Get-only device property results in the Access_Denied response.

If the first parameter contains a value of 0xFFFFFFFF, all settable device properties,

except DateTime (0x5011), shall be reset to their default value.

Revision 1.1 April 6
th

, 2011 237

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.24 TerminateOpenCapture

This operation is used in conjunction with the InitiateOpenCapture operation to capture

new objects in an open-ended way.

Operation Code 0x1018

Operation Parameter 1 TransactionID

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Parameter_Not_Supported,

Invalid_Parameter, Capture_Already_Terminated

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter identifies the TransactionID of the InitiateOpenCapture operation

which initiated the capture sequence which the initiator wishes to terminate. If the

capture has already completed, this operation shall respond with a

Capture_Already_Terminated response code. If the first parameter does not contain a

valid TransactionID, or does not refer to a transaction which contained

InitiateOpenCapture operation, the responder shall return a Invalid_TransactionID

response.

Revision 1.1 April 6
th

, 2011 238

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.25 MoveObject

This operation changes the location of an object on the device, either by changing the

storage on which it is stored, or changing the location in which it is located, or both.

Operation Code 0x1019

Operation Parameter 1 ObjectHandle

Operation Parameter 2 StorageID of store to move object to

Operation Parameter 3 ObjectHandle of the new ParentObject

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Store_Read_Only,

Store_Not_Available, Invalid_ObjectHandle,

Invalid_ParentObject, Device_Busy,

Parameter_Not_Supported, Invalid_StorageHandle,

Store_Full, Partial_Deletion

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter identifies the object which is to be moved. If the first parameter does

not refer to an object on the device, the responder shall return an Invalid_ObjectHandle

response.

The second parameter is required, and identifies the storage to which the object indicated

in the first parameter is to be moved. If the target storage cannot be written to, this

operation shall fail with an appropriate response code (Store_Not_Available,

Store_Read_Only, Invalid_StorageHandle, Store_Full).

The third parameter is optional, and identifies the location on the file hierarchy of the

device to which this object is to be moved. If this parameter is unused, it shall contain a

value of 0x00000000, and the object shall be moved to the root of the storage indicated

by the second parameter.

If some subset of objects are not moved (but at least one object is moved), the response

Partial_Deletion shall be returned.

This object does not change the ObjectHandle of the object which is moved.

Revision 1.1 April 6
th

, 2011 239

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.26 CopyObject

This operation causes the device to create a copy of the target object and place that copy

in a storage and location indicated by the parameters of this operation.

Operation Code 0x101A

Operation Parameter 1 ObjectHandle

Operation Parameter 2 StorageID that the newly copied object shall be placed into

Operation Parameter 3 ObjectHandle of newly copied object’s parent

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Store_Read_Only,

Invalid_ObjectHandle, Invalid_ParentObject, Device_Busy,

Store_Full, Parameter_Not_Supported, Invalid_StorageID

Response Parameter 1 ObjectHandle of new copy of object

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter identifies the object which is to be copied. If the first parameter does

not refer to an object on the device, the responder shall return an Invalid_ObjectHandle

response.

The second parameter is required, and identifies the storage on which the copy of the

object indicated in the first parameter is to be placed. If the target storage cannot be

written to, this operation shall fail with an appropriate response code.

(Store_Not_Available, Store_Read_Only, Invalid_StorageHandle, Store_Full)

The third parameter is optional, and identifies the location on the file hierarchy of the

device to which the copy of the object indicated in the first parameter is to be placed. If

this parameter is unused, it shall contain a value of 0x00000000, and the object shall be

placed in the root of the storage indicated by the second parameter.

Following the successful completion of this operation, the ObjectHandle of the new

object created is returned in the first response parameter.

Revision 1.1 April 6
th

, 2011 240

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.27 GetPartialObject

This operation retrieves a partial object from the device, and may be used in place of the

GetObject operation.

Operation Code 0x101B

Operation Parameter 1 ObjectHandle

Operation Parameter 2 Offset in bytes

Operation Parameter 3 Maximum number of bytes to obtain

Operation Parameter 4 None

Operation Parameter 5 None

Data Object Binary Data

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Invalid_ObjectFormatCode, Invalid_Parameter,

Store_Not_Available, Device_Busy,

Parameter_Not_Supported

Response Parameter 1 Actual number of bytes sent

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This operation applies to all data object types on a device. In the context of this operation,

the size fields in the ObjectInfo and Size Object Property represent the maximum size, as

opposed to the actual size. This operation is not necessary for objects which do not have a

binary component, such as folders or hierarchies.

The operation is identical to GetObject, except that the second and third parameters

contain the offset in bytes and the number of bytes to obtain starting from the offset. If

the entire object is desired, starting from the offset in the second parameter, the third

parameter may be set to 0xFFFFFFFF. The first response parameter shall contain the

actual number of bytes of the object sent, not including any wrappers or overhead

structures.

Revision 1.1 April 6
th

, 2011 241

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.28 InitiateOpenCapture

This operation causes the device to initiate the capture of multiple new data objects as

specified by the current device properties.

Operation Code 0x101C

Operation Parameter 1 [StorageID]

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_StorageID, Store_Full,

Invalid_ObjectFormatCode, Invalid_Parameter,

Store_Not_Available, Invalid_Code_Format, Device_Busy,

Parameter_Not_Supported, Store_Read-Only

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The captured objects shall be saved to the store indicated by the StorageID in the first

parameter. If the StorageID is 0x00000000, the location where the objects will be saved

is determined by the responder. If the store specified is unavailable or the first parameter

contains 0x00000000 and there are no stores available, this operation shall return

Store_Not_Available.

Capturing new data objects is an asynchronous operation. If the ObjectFormatCode in the

second operation parameter is unspecified (and contains a value of 0x00000000), then the

device shall capture an object in a format chosen by the device.

A successful response to the InitiateOpenCapture operation means that the responder has

begun to capture one or more objects. When the initiator wishes to terminate the

capturing of new objects, it shall send a TerminateOpenCapture operation. The

CaptureComplete event shall not be sent at the end of this capture period if it is

terminated by the initiator. As new objects are created on the responder, the responder is

required to send an ObjectAdded event to the initiator for each object. The ObjectAdded

event shall contain the TransactionID of the InitiateOpenCapture operation which

initiated the capture of the device.

Revision 1.1 April 6
th

, 2011 242

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

If the store becomes full while completing this operation, the device shall send a

Store_Full event containing the TransactionID of the InitiateOpenCapture operation in

progress. In the case of multiple objects being captured, each object shall be treated

separately, so any object captured before the store becomes full shall be retained.

Whether an object that was partially captured can be retained and used is a function of the

device’s behavior and object format. For example, if the device runs out of room while

capturing a video clip, it may be able to save the portion that it had room to store. A

Store_Full event completes the capture.

Single Object InitiateOpenCapture Sequence

Initiator -> Responder: InitiateOpenCapture Operation

Responder -> Initiator: InitiateOpenCapture Response

Initiator -> Responder: TerminateOpenCapture Operation

Responder -> Initiator: TerminateOpenCapture Response

Responder -> Initiator: ObjectAdded Event

Initiator -> Responder: GetObjectInfo Operation

Responder -> Initiator: ObjectInfo Dataset/Response

Multiple Object InitiateOpenCapture Sequence

Initiator -> Responder: InitiateOpenCapture Operation

Responder -> Initiator: InitiateOpenCapture Response

Responder -> Initiator: ObjectAdded Event(1)*

Responder -> Initiator: ObjectAdded Event(2)

Responder -> Initiator: ObjectAdded Event(n-1)

Responder -> Initiator: ObjectAdded Event(n)

Initiator -> Responder: TerminateOpenCapture Operation

Responder -> Initiator: TerminateOpenCapture Response

Initiator -> Responder: GetObjectInfo Operation(1)

Responder -> Initiator: ObjectInfo Dataset/Response(1)

Initiator -> Responder: GetObjectInfo Operation(2)

Responder -> Initiator: ObjectInfo Dataset/Response(2)

Initiator -> Responder: GetObjectInfo Operation(n-1)

Responder -> Initiator: ObjectInfo Dataset/Response(n-1)

Initiator -> Responder: GetObjectInfo Operation(n)

Responder -> Initiator: ObjectInfo Dataset/Response(n)

Revision 1.1 April 6
th

, 2011 243

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.29 GetObjectPropsSupported

This operation returns an ObjectPropCode array of supported object properties for the

object format indicated in the first parameter.

Operation Code 0x9801

Operation Parameter 1 ObjectFormatCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectPropCode Array

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Device_Busy,

Invalid_TransactionID, Invalid_ObjectFormatCode

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 244

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.30 GetObjectPropDesc

This operation returns the appropriate property describing dataset indicated in the first

parameter as defined for the object format indicated in the second parameter.

Operation Code 0x9802

Operation Parameter 1 ObjectPropCode

Operation Parameter 2 Object Format Code

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectPropDesc dataset

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied,

Invalid_ObjectPropCode, Invalid_ObjectFormatCode,

Device_Busy

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

Revision 1.1 April 6
th

, 2011 245

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.31 GetObjectPropValue

This operation returns the current value of an object property.

Operation Code 0x9803

Operation Parameter 1 ObjectHandle

Operation Parameter 2 ObjectPropCode

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectProp Value

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectPropCode,

Device_Busy, Invalid_Object_Handle

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter is required and identifies the object for which the property is

requested.

The second parameter is required and identifies the property that is requested for the

object identified in the first parameter.

The size and format of the data returned from this operation shall be determined from the

corresponding ObjectPropDesc dataset returned from the GetObjectPropDesc operation.

Revision 1.1 April 6
th

, 2011 246

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.32 SetObjectPropValue

This operation sets the current value of the object property.

Operation Code 0x9804

Operation Parameter 1 ObjectHandle

Operation Parameter 2 ObjectPropCode

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectProp Value

Data Direction I->R

ResponseCode Options OK, Session_Not_Open, Invalid_TransactionID,

Access_Denied, Invalid_ObjectPropCode,

Invalid_ObjectHandle, Device_Busy,

Invalid_ObjectProp_Format, Invalid_ObjectProp_Value

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This operation sets the current value of the object property indicated by parameter 2 for

the object indicated by parameter 1 to the value indicated in the data phase of the

operation. The format of the property value object sent in the data phase can be

determined by the DatatypeCode field of the property's ObjectPropDesc dataset. If the

property is not settable, the response Access_Denied shall be returned. If the value is not

allowed by the device, Invalid_ObjectProp_Value shall be returned. If the format or size

of the property value is incorrect, Invalid_ObjectProp_Format shall be returned.

Revision 1.1 April 6
th

, 2011 247

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.33 GetObjectReferences

This operation returns an array of currently valid ObjectHandles.

Operation Code 0x9810

Operation Parameter 1 ObjectHandle

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectHandle array

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Invalid_ObjectHandle,

Store_Not_Available

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

If the object handle passed in the first parameter does not refer to a valid object, a

response code of Invalid_ObjectHandle shall be returned.

Revision 1.1 April 6
th

, 2011 248

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.34 SetObjectReferences

This operation replaces the object references on an object.

Operation Code 0x9811

Operation Parameter 1 ObjectHandle

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectHandle array

Data Direction I->R

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied, Invalid_StorageID,

Store_Read_Only, Store_Full, Store_Not_Available,

Invalid_ObjectHandle, Invalid_ObjectReference

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This operation replaces the object references on a device with the array of object handles

passed in the data phase. The object handles passed in the data phase must be maintained

indefinitely, and returned as valid object handles referencing the same object in later

sessions. If any of the object handles in the array passed in the data phase are invalid, the

responder shall fail the operation by returning a response code of

Invalid_ObjectReference.

If the object handle passed in the first parameter does not refer to a valid object a

response code of Invalid_ObjectHandle shall be returned.

If SetObjectReferences is called on an association object with an Association Type of 1

and an Association Description of 1, the device shall fail the operation with the response

Access_Denied.

Revision 1.1 April 6
th

, 2011 249

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

D.2.35 Skip

This operation updates the current object being played back.

Operation Code 0x9820

Operation Parameter 1 Skip Index

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data None

Data Direction N/A

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied,

Store_Not_Available, Invalid_Parameter

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

This operation updates the current object being played back by skipping either ahead or

behind in a device-specific playback queue. This operation requires one parameter,

containing a signed INT32 value, which indicates the depth and direction into the

playback queue to which the current playback object should skip.

A value of 1 indicates that the device shall skip ahead one media object to the object

immediately following the object currently identified in the Playback Object device

property. A value of -1 indicates that the previous object in the device playback queue

shall be loaded as the current playback object. If a device supports this operation, it must

support values of [-1,1]. If a value outside of this range is passed in this parameter, and

the device is incapable of interpreting it, a response code of Invalid_Parameter shall be

returned. If a value of 0 is passed in this parameter, the responder shall fail this operation

with a response code of Invalid_Parameter.

Revision 1.1 April 6
th

, 2011 250

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix E – Enhanced Operations

E.1 Enhanced Operation Summary Table

Operation Name Operation Datacode

GetObjectPropList 0x9805

SetObjectPropList 0x9806

GetInterdependentPropDesc 0x9807

SendObjectPropList 0x9808

Revision 1.1 April 6
th

, 2011 251

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

E.2 Enhanced Operation Descriptions

E.2.1 GetObjectPropList

This operation returns a dataset containing all object properties specified by the query

defined by the five parameters.

The primary purpose of this operation is to provide optimized access to object properties

without needing to individually query each {object,property} pair. However, it also

provides a more flexible querying mechanism for object properties in general, and

supercedes the simpler, object property retrieval methods.The primary purpose of this

operation is to provide optimized access to object properties without needing to

individually query each {object,property} pair. However, it also provides a more flexible

querying mechanism for object properties in general, and supercedes the simpler, object

property retrieval methods.

Operation Code 0x9805

Operation Parameter 1 ObjectHandle

Operation Parameter 2 [ObjectFormatCode]

Operation Parameter 3 ObjectPropCode

Operation Parameter 4 [ObjectPropGroupCode]

Operation Parameter 5 [Depth]

Data ObjectPropList dataset

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, ObjectProp_Not_Supported,

Invalid_ObjectHandle, Group_Not_Supported, Device_Busy,

Parameter_Not_Supported,

Specification_By_Format_Unsupported,

Specification_By_Group_Unsupported,

Specification_By_Depth_Unsupported,

Invalid_Code_Format, Invalid_ObjectPropCode,

Invalid_StorageID, Store_Not_Available

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

The first parameter is required, and defines the object for which properties are requested.

A value of 0xFFFFFFFF indicates that all objects are requested. A value of 0x00000000

indicates that all objects at the root level are desired, and may be further specified by the

second and/or fifth parameters.

Revision 1.1 April 6
th

, 2011 252

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The second parameter is optional, and may be used to request only properties for objects

which possess a format specified by the ObjectFormatCode. A value of 0x00000000

indicates that this parameter is not being used, and properties of all Object Formats are

desired. If the value is not 0x00000000 and the device does not support specification by

ObjectFormatCode, it shall fail the operation by returning a response code with the value

of Specificiation_By_Format_Unsupported. For the second parameter, the value

0xFFFFFFFF is reserved for future use.

The third parameter is required and identifies the ObjectPropCode of the property that is

being requested. A value of 0xFFFFFFFF indicates that all properties are requested

except those with a group code of 0xFFFFFFFF; properties with this group code are

defined as being potentially very slow, and shall be retrieved separately.

A value of 0x00000000 in the third parameter indicates that the fourth parameter shall be

used. If the value is 0x00000000 and the Responder does not support specification by

ObjectPropGroupCode, it shall fail the operation by returning a response code with the

value of Specification_By_Group_Unsupported. If both the third and the fourth

parameters contain the value 0x00000000, then Parameter_Not_Supported shall be

returned.

The final parameter is optional, and allows properties to be queried for all objects at a

certain level (or levels) of a folder hierarchy on the device. In this case, properties (as

defined by the third and/or fourth parameters) shall be returned for all objects, down to a

depth from the top object, including the top object, which is identified in the first

parameter. If the first parameter contains a value of 0x00000000, then the Responder

shall return property values for objects starting from the root (having no parent object) to

the desired depth.

If the value of the fifth parameter is 0x00000000, it indicates that properties for objects

are desired to a depth of 0, which returns only the head object (as indicated by the first

parameter). If the fifth parameter contains a value of 0x00000000, and the ObjectHandle

in the first parameter also contains a value of 0x00000000, the Responder shall return an

empty set.

If the final parameter contains a value of 0xFFFFFFFF, the Responder shall return all

values for all objects that are contained within the folder hierarchy rooted at the object

identified by the first parameter. It should be noted that a value of 0x00000000 in the first

two parameters, followed by a value of 0xFFFFFFFF in the fifth parameter, is equivalent

to having a value of 0xFFFFFFFF in the first parameter.

Revision 1.1 April 6
th

, 2011 253

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

If the fifth parameter contains a non-zero value and the property or properties indicated

by the third and fourth parameters are not supported for all objects in the desired hierarcy,

then the Responder shall return an ObjectPropList dataset containing only the properties

which are both requested and supported for each (but not necessarily every) object in the

desired hierarchy. If a property is identified by the third parameter which not

implemented for any object format type on the device, then a response of

ObjectProp_Not_Supported shall be returned.

It is recommended that Responders support specification by depth to at least one level to

support file-browsing scenarios. If the Responder does not support specification by

depth, or the Responder does not support specification to the desired depth, it shall fail

the operation by returning a response code with the value of

Specification_By_Depth_Unsupported.

E.2.1.1 ObjectPropList Dataset Table:

Field name Field

order

Size

(bytes)

Datatype Description

NumberOfElements 1 4 UINT32 Count of property

quadruples in this dataset.

Element1ObjectHandle 2 4 ObjectHandle ObjectHandle of the object

to which Property1

applies.

Element1PropertyCode 3 2 Datacode Datacode identifying the

ObjectPropDesc

describing Property1.

Element1Datatype 4 2 Datacode This field identifies the

DatatypeCode of

Property1.

Element1Value 5 DTS DTS Value of Property1.

Element2ObjectHandle 6 4 ObjectHandle ObjectHandle of the object

to which Property2

applies.

Element2PropertyCode 7 2 Datacode Datacode identifying the

ObjectPropDesc

describing Property2.

Element2Datatype 8 2 Datacode This field identifies the

DatatypeCode of

Property2.

Element2Value 9 DTS DTS Value of Property2.

...

ElementNObjectHandle 4*N-2 4 ObjectHandle ObjectHandle of the object

to which PropertyN

Revision 1.1 April 6
th

, 2011 254

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

applies.

E.2.2 SetObjectPropList

This operation sets ObjectProperty values contained in the dataset provided.

Operation Code 0x9806

Operation Parameter 1 None

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data ObjectPropList dataset

Data Direction I->R

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_denied,

ObjectProp_Not_Supported, Invalid_ObjectProp_Format,

Invalid_ObjectProp_Value, Invalid_ObjectHandle,

Device_Busy, ObjectProp_Not_Supported,

Store_Not_Available, Store_Full

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

If this operation fails, and all property values sent in the ObjectPropList are not applied

successfully, the operation must return a ResponseCode identifying the reason for failing

to update the property, and a response parameter indicating the (0-based) index of the

property which failed to be applied. The responder must not process any of the object

property values that follow the property that failed to update. If none of the properties

were able to be set, the response parameter shall contain a value of 0x00000000.

If the operation succeeds, the first response parameter shall contain 0x00000000.

Revision 1.1 April 6
th

, 2011 255

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

E.2.3 GetInterdependentPropDesc

An Initiator can query for interdependent properties using the

GetInterdependentPropDesc operation.

Operation Code 0x9807

Operation Parameter 1 ObjectFormatCode

Operation Parameter 2 None

Operation Parameter 3 None

Operation Parameter 4 None

Operation Parameter 5 None

Data InterdependentPropDesc dataset

Data Direction R->I

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Device_Busy, Invalid_Code_Format

Response Parameter 1 None

Response Parameter 2 None

Response Parameter 3 None

Response Parameter 4 None

Response Parameter 5 None

An Initiator can query for interdependent properties using the

GetInterdependentPropDesc operation, which returns an array of ObjectPropertyDesc

arrays, each describing an allowed collection of ranges. Each array of

ObjectPropertyDesc datasets returned gives one possible definition for the interdependent

properties contained in that array; properties not found in that array are constrained only

by the usual ObjectPropDesc datasets.

The first parameter is required, and defines the object format for which interdependent

property codes are desired. A value of 0xFFFFFFFF or 0x00000000 shall not be used.

The operation returns the dataset shown in the following table.

E.2.3.1 InterDependentPropList Dataset Table

Field name Field

order

Size

(bytes)

Datatype Description

NumberOfInterdependencies 1 2 UINT32 Count of arrays of

interdependencies

to follow

NumberOfPropDescs 1 2 2 UINT16 Count of object

property

description datasets

Revision 1.1 April 6
th

, 2011 256

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

in this

interdependency

array

ObjectPropDesc Dataset 1,1 3 DTS See

ObjectPropDesc

dataset

definition

An

ObjectPropDesc

dataset defining

allowed values in

this interdependent

set

…

ObjectPropDesc Dataset 1, n n+3 DTS See

ObjectPropDesc

Dataset

Definition

An

ObjectPropDesc

dataset defining

allowed values in

this interdependent

set

NumberOfPropDescs 2 n+4 2 UINT16 Count of object

property

description datasets

in this

interdependency

array

ObjectPropDesc Dataset 2,1 n+5 DTS See

ObjectPropDesc

dataset

definition

An

ObjectPropDesc

dataset defining

allowed values in

this interdependent

set.

…

ObjectPropDesc Dataset 2,

m

m+n+4 DTS See

ObjectPropDesc

Dataset

Definition

An

ObjectPropDesc

dataset defining

allowed values in

this interdependent

set

…

This dataset begins with an entry which counts the number of interdependencies which

follow.

Revision 1.1 April 6
th

, 2011 257

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Each interdependency which follows consists of a set of concatenated ObjectPropDesc

datasets whose constraints (as identified in their FORM fields) apply as a group. This set

is preceded by a count of the number of ObjectPropDesc datasets which follow in that

interdependent set of object properties.

Revision 1.1 April 6
th

, 2011 258

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

E.2.4 SendObjectPropList

Operation Code 0x9808

Operation Parameter 1 [Destination StorageID on responder]

Operation Parameter 2 [Parent ObjectHandle on responder where object shall be

placed]

Operation Parameter 3 ObjectFormatCode

Operation Parameter 4 ObjectSize [most significant 4 bytes]

Operation Parameter 5 ObjectSize [least significant 4 bytes]

Data ObjectPropList dataset

Data Direction I->R

ResponseCode Options OK, Operation_Not_Supported, Session_Not_Open,

Invalid_TransactionID, Access_Denied, Invalid_StorageID,

Store_Read_Only, Store_Full, Invalid_ObjectFormatCode,

Store_Not_Available, Parameter_Not_Supported,

Invalid_ParentObject, Invalid_Dataset,

ObjectProp_Not_Supported, Invalid_ObjectProp_Format,

Invalid_ObjectProp_Value, Invalid_ObjectHandle,

Object_Too_Large, Store_Full,

Specification_Of_Destination_Unsupported

Response Parameter 1 Responder StorageID in which the object will be stored

Response Parameter 2 Responder parent ObjectHandle in which the object will be

stored

Response Parameter 3 Responder’s reserved ObjectHandle for the incoming object

Response Parameter 4 [Index of failed property]

Response Parameter 5 None

This is used as an alternative first operation when the initiator wants to send an object to

the responder. This operation sends a modified ObjectPropList dataset from the initiator

to the responder.

This operation is sent prior to the SendObject operation, in order to inform the responder

about the properties of the object that it intends to send later, and to ask whether the

object can be sent to the responder. A response of "OK" implies that the receiver can

accept the object, and serves to inform the sender that it may now issue a SendObject

operation for the object.

Revision 1.1 April 6
th

, 2011 259

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The first parameter is optionally used to indicate the store on the responder into which the

object shall be stored. If this parameter is specified, and the responder will not be able to

store the object in the indicated store, the operation shall fail, and the appropriate

response, such as Specification_Of_Destination_Unsupported, Store_Not_Available,

Store_Read_Only, or Store_Full shall be used. If this parameter is unused, it shall be set

to 0x00000000, and the responder shall decide in which store to place the object, whether

that is a responder-determined default location, or the location with the most free space

(or possibly the only location with enough free space).

The second parameter is optionally used to indicate where on the indicated store the

object is to be placed (the association/folder that the object is to become a child of). If

this parameter is used, the first parameter must also be used. If the receiver is unable to

place the object as a child of the indicated second parameter, the operation shall fail.

The third parameter identifies the ObjectFormat datacode of the object, which may be

required to validate the properties sent in the data phase. If the ObjectFormat code

indicated in the third parameter is not supported by the responder (as indicated in the

DeviceInfo dataset), the responder shall fail and return an Invalid_ObjectHandle

response.

The fourth and fifth parameters together indicate the size of the data object to be sent. If

the indicated size is larger than the available space on the device, it shall fail this

operation and return a response of Store_Full.

If the problem with the attempted specification is the general inability of the receiving

device to allow the specification of destination, the response

Specification_of_Destination_Unsupported shall be sent. This response implies that the

initiator should not try to specify a destination location in future invocations of

SendObjectInfo, as all attempts at such specification will fail. If the problem is only with

the particular destination specified, the Invalid_ObjectHandle or Invalid_ParentObject

response shall be used, depending on whether the ObjectHandle did not refer to a valid

object or the indicated object is a valid object, but is not an association.

If the root directory of the indicated store is needed, the second parameter shall be set to

0xFFFFFFFF. If this parameter is unused, it shall be set to 0x00000000, and the

responder shall decide where in the indicated store the object is to be placed. If neither

the first nor the second parameter is used, the responder shall decide which store to place

the object in, and where to place it within that store.

An object handle issued during a successful SendObjectInfo or SendObjectPropList

operation should be reserved for the duration of the MTP session, even if there is no

successful SendObject operation for that handle.

Revision 1.1 April 6
th

, 2011 260

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Object properties that are get-only (0x00 GET) shall accept values during object creation

via the SendObjectPropList command.

If the responder agrees that the object may be sent, it is required to retain this

ObjectPropList dataset until the next SendObject, SendObjectPropList or SendObjectInfo

operation is performed within the session. If the SendObjectPropList operation succeeds,

and the next occurring SendObject operation does not return a successful response, the

sent ObjectPropList dataset shall be retained by the responder in case the initiator wants

to re-attempt the SendObject operation for that previously successful SendObjectPropList

operation. If the initiator wants to resend the ObjectPropList dataset before attempting to

resend the object, it may do so. Successful completion of the SendObjectPropList

operation conveys that the responder possesses a copy of all sent properties, and that the

responder has allocated space for the incoming data object. Any response code other than

OK indicates that the responder has not retained the ObjectPropList dataset, and the

object shall not be sent.

For a particular session, the receiving device shall only retain one ObjectPropList or

ObjectInfo dataset that is the result of a SendObjectInfo or SendObjectPropList operation

in memory at a time. If another SendObjectInfo or SendObjectPropList operation occurs

before a SendObject operation, the new ObjectInfo or ObjectPropList shall replace the

previously held one. If this occurs, any storage or memory space reserved for the object

described in the overwritten ObjectInfo or ObjectPropList dataset shall be freed before

overwriting and allocating the resources for the new data. Upon the successful execution

of this operation, the next operation called in the same session shall be a SendObject

operation. If the next operation sent in the same session is not a SendObject operation,

the responder shall not retain the sent ObjectPropList or ObjectInfo dataset.

The first response parameter of this operation shall be set to the StorageID that the

responder will store the object into if it is sent. The second response parameter of this

operation shall be set to the parent ObjectHandle of the association that the object

becomes a child of. If the object is stored in the root of the store, this parameter shall be

set to 0xFFFFFFFF.

If the initiator wants to retain an association hierarchy on the responder for the objects it

is sending, then the objects must be sent top down, starting with the highest level of the

hierarchy, and proceeding in either a depth-first or breadth-first fashion down the

hierarchy tree. The initiator shall use the responder’s newly assigned ObjectHandle in the

third response parameter for the ParentObject that is returned in the SendObjectPropList

response as the second operation parameter for a child’s SendObjectPropList operation.

Revision 1.1 April 6
th

, 2011 261

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

The dataset sent in this operation is similar to the ObjectPropValueList dataset sent and

received in the SetObjectPropList and GetObjectPropList operations respectively, but has

additional restrictions on the values of the contained fields. All ObjectHandle fields must

contain the value 0x00000000, and all properties defined in this operation will be applied

to the object, which is sent in a subsequent SendObject operation. If any properties are

inconsistent, that is, the property is either not supported or the value is inconsistent for

the sent ObjectFormat, then this operation shall fail with the appropriate response code,

and indicate the (0-based) index of the first failed property in the fourth return parameter.

If the object size indicated in the data phase of this operation indicates that the object to

be sent has a size of 0, then a response of OK indicates that the object has been sent

successfully, and it is not required that this operation be followed by a SendObject

operation. However, the responder shall not fail the request if a SendObject operation

follows containing an object of size 0.

Properties which are contained in the operation parameters (StorageID, ParentObject,

ObjectFormat, ObjectSize) shall not be included in the sent dataset.

Revision 1.1 April 6
th

, 2011 262

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix F – Responses

F.1 Response Summary Table

Name Datacode

Undefined 0x2000

OK 0x2001

General_Error 0x2002

Session_Not_Open 0x2003

Invalid_TransactionID 0x2004

Operation_Not_Supported 0x2005

Parameter_Not_Supported 0x2006

Incomplete_Transfer 0x2007

Invalid_StorageID 0x2008

Invalid_ObjectHandle 0x2009

DeviceProp_Not_Supported 0x200A

Invalid_ObjectFormatCode 0x200B

Store_Full 0x200C

Object_WriteProtected 0x200D

Store_Read-Only 0x200E

Access_Denied 0x200F

No_Thumbnail_Present 0x2010

SelfTest_Failed 0x2011

Partial_Deletion 0x2012

Store_Not_Available 0x2013

Specification_By_Format_Unsupported 0x2014

No_Valid_ObjectInfo 0x2015

Invalid_Code_Format 0x2016

Unknown_Vendor_Code 0x2017

Capture_Already_Terminated 0x2018

Device_Busy 0x2019

Invalid_ParentObject 0x201A

Invalid_DeviceProp_Format 0x201B

Invalid_DeviceProp_Value 0x201C

Invalid_Parameter 0x201D

Session_Already_Open 0x201E

Transaction_Cancelled 0x201F

Specification_of_Destination_Unsupported 0x2020

Invalid_ObjectPropCode 0xA801

Invalid_ObjectProp_Format 0xA802

Invalid_ObjectProp_Value 0xA803

Invalid_ObjectReference 0xA804

Group_Not_Supported 0xA805

Invalid_Dataset 0xA806

Specification_By_Group_Unsupported 0xA807

Specification_By_Depth_Unsupported 0xA808

Object_Too_Large 0xA809

ObjectProp_Not_Supported 0xA80A

Revision 1.1 April 6
th

, 2011 263

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Revision 1.1 April 6
th

, 2011 264

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2 Response Descriptions

F.2.1 Undefined

Response Code: 0x2000

This response code is not used.

F.2.2 OK

Response Code: 0x2001

Operation has completed successfully.

F.2.3 General_Error

Response Code: 0x2002

This operation did not complete, and the reason for the failure is not known.

F.2.4 Session_Not_Open

Response Code: 0x2003

Indicates that the session handle identified by the operation dataset for this operation is

not a currently open session.

F.2.5 Invalid_TransactionID

Response Code: 0x2004

Indicates that the TransactionID of this operation does not identify a valid transaction.

F.2.6 Operation_Not_Supported

Response Code: 0x2005

This response indicates that an Operation has been called with what appears to be a valid

code, but the responder does not support the operation identified by that code. The

initiator should only invoke operations contained in the responder’s DeviceInfo dataset,

so this response should not normally be returned.

Revision 1.1 April 6
th

, 2011 265

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.7 Parameter_Not_Supported

Response Code: 0x2006

Indicates that a parameter of an operation contains a non-zero value, but is not supported.

This response is different from Invalid_Parameter.

F.2.8 Incomplete_Transfer

Response Code: 0x2007

This response shall be sent when a transfer did not complete successfully, and indicates

that data transferred is to be discarded. This response shall not be sent if the transfer was

cancelled by the Initiator.

F.2.9 Invalid_StorageID

Response Code: 0x2008

Indicates that one or more StorageIDs sent as parameters of an operation do not refer to

actual StorageIDs on the device.

F.2.10 Invalid_ObjectHandle

Response Code: 0x2009

Indicates that one or more ObjectHandles sent as parameters of an operation do not refer

to actual Objects on the device. The list of valid ObjectHandles should be requested

again, along with any appropriate ObjectInfo datasets.

F.2.11 DeviceProp_Not_Supported

Response Code: 0x200A

Indicates that a DevicePropCode sent as a parameter of an operation appears to be a valid

code, but is not supported by the device. The initiator should only attempt to work with

Device Properties identified in the DevicePropertiesSupported field of the DeviceInfo

Dataset, so this response should not normally be returned.

Revision 1.1 April 6
th

, 2011 266

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.12 Invalid_ObjectFormatCode

Response Code: 0x200B

Indicates that the device does not support an ObjectFormatCode supplied in the given

context.

F.2.13 Store_Full

Response Code: 0x200C

Indicates that a store identified in this operation is full, and this is preventing the

successful completion of that operation.

F.2.14 Object_WriteProtected

Response Code: 0x200D

Indicates that an object referred to by the operation is write-protected.

F.2.15 Store_Read-Only

Response Code: 0x200E

Indicates that a store referred to by the operation is read-only.

F.2.16 Access_Denied

Response Code: 0x200F

This response shall be sent when access to data required by the operation is denied. This

shall not be used when the device is busy, but to indicate that if the current state of the

device does not change access will continue to be denied.

F.2.17 No_Thumbnail_Present

Response Code: 0x2010

Indicates that a data object exists with the specified ObjectHandle, but a thumbnail

cannot be provided for that object.

Revision 1.1 April 6
th

, 2011 267

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.18 SelfTest_Failed

Response Code: 0x2011

This shall be sent when the device fails a device-specific self test.

F.2.19 Partial_Deletion

Response Code: 0x2012

Indicates that only a subset of the objects indicated for deletion were actually deleted.

This could be caused by some of those objects being write-protected or on read-only

stores.

F.2.20 Store_Not_Available

Response Code: 0x2013

Indicates that the store indicated (or the store that contains the indicated object) is not

physically available. This can be caused by media ejection. This response shall not be

used to indicate that the store is busy.

F.2.21 Specification_By_Format_Unsupported

Response Code: 0x2014

This response shall be sent when an operation attempts to specify an action only on

objects which have a particular format code, but the responder does not support that

capability. The operation should be attempted again without specifying by format. When

this response is sent, it shall indicate that any future attempts to call the same operation

specifying by format will also result in this response.

F.2.22 No_Valid_ObjectInfo

Response Code: 0x2015

This shall be sent when a SendObject operation has been called without the initiator

having previously sent a corresponding SendObjectInfo successfully. The initiator must

successfully complete a SendObjectInfo operation before attempting another SendObject

operation.

Revision 1.1 April 6
th

, 2011 268

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.23 Invalid_Code_Format

Response Code: 0x2016

Indicates that a datacode used in this operation does not have the correct format, and is

therefore known to be invalid. This response shall be used when the most-significant bits

of a datacode does not have the format required for that type of code, and not when the

data appears to have the correct type but is invalid for other reasons.

F.2.24 Unknown_Vendor_Code

Response Code: 0x2017

Indicates that the indicated data code has the correct format, but is in a vendor extension

range not recognized by the device. This response will typically not occur, because the

Initiator can identify the supported vendor extensions by examination of the DeviceInfo

dataset.

F.2.25 Capture_Already_Terminated

Response Code: 0x2018

This shall be sent when an operation attempts to terminate a capture session, but that the

capture session has already terminated. This response is only used for the

TerminateOpenCapture operation, which is only used to terminate open-ended captures.

F.2.26 Device_Busy

Response Code: 0x2019

This response shall be sent when the device is not currently able to process a request

because it, or the specified store, is busy. This response implies that the operation may be

successful at a later time, but is not possible right now. This response shall not be used to

indicate that a store is physically unavailable.

F.2.27 Invalid_ParentObject

Response Code: 0x201A

This response shall be sent when an indicated object is not of type Association, but is

required to be of type Association in the context in which it is used, and therefore is not a

valid ParentObject. This response is not intended to be used for specified ObjectHandles

that do not refer to valid objects, but only for ObjectHandles which refer to actual objects

which are not of type Association.

Revision 1.1 April 6
th

, 2011 269

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.28 Invalid_DeviceProp_Format

Response Code: 0x201B

This response shall be sent when an attempt is made to set a DeviceProperty, but the

DevicePropDesc dataset sent is not the correct size or format.

F.2.29 Invalid_DeviceProp_Value

Response Code: 0x201C

This response shall be sent when an attempt is made to set a DeviceProperty to a

particular value, but that value is not allowed by the device.

F.2.30 Invalid_Parameter

Response Code: 0x201D

This response indicates that a parameter of the operation is not a valid value. This

response is different from Parameter_Not_Supported, which indicates that no value was

expected in this parameter.

F.2.31 Session_Already_Open

Response Code: 0x201E

This response may be sent in resonse to an OpenSession operation. If multiple sessions

are supported by the device, this response indicates that a session with the specified

SessionID is already open. If multiple sessions are not supported by the device, this

response indicates that a session is open and must be closed before another session can be

opened.

F.2.32 Transaction_Cancelled

Response Code: 0x201F

This response indicates that the operation was interrupted due to manual cancellation by

the initiator.

Revision 1.1 April 6
th

, 2011 270

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.33 Specification_of_Destination_Unsupported

Response Code: 0x2020

This response may be sent as a response to a SendObjectInfo operation to indicate that

the responder does not support the specification of destination. This response implies that

any future attempts to specify the object destination will also fail with the same response.

F.2.34 Invalid_ObjectPropCode

Response Code: 0xA801

Indicates that the device does not support the sent Object Property Code in this context.

F.2.35 Invalid_ObjectProp_Format

Response Code: 0xA802

Indicates that an object property sent to the device is in an unsupported size or type.

F.2.36 Invalid_ObjectProp_Value

Response Code: 0xA803

Indicates that an object property sent to the device is the correct type, but contains a value

which is not supported. The supported values shall be identified by the ObjectPropDesc

dataset.

F.2.37 Invalid_ObjectReference

Response Code: 0xA804

Indicates that a sent Object Reference is invalid. Either the reference contains an object

handle not present on the device, or the reference attempting to be set is unsupported in

context.

Revision 1.1 April 6
th

, 2011 271

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.38 Invalid_Dataset

Response Code: 0xA806

Indicates that the dataset sent in the data phase of this operation is invalid. While the PTP

specification (refer to “USB Still Image Capture Device Definition – July 2000” and the

specifications referred to by that document) refers to “Invalid_Dataset”, at no time does it

specify a response code. Thus the definition of Invalid_Dataset in this MTP specification

does not conflict with the PTP specification.

F.2.39 Specification_By_Group_Unsupported

Response Code: 0xA807

May be used as the response to indicate that the responder does not support the

specification of groups by the initiator. This response implies that the initiator should not

attempt to specify the group code in any future operations, as they will also fail with the

same response.

F.2.40 Specification_By_Depth_Unsupported

Response Code: 0xA808

May be used as the response to indicate that the responder does not support the

specification of depth by the initiator. This response implies that the initiator should not

attempt to specify depth in any future call of the operation which resulted in this

response, as they will also fail with the same response.

F.2.41 Object_Too_Large

Response Code: 0xA809

Indicates that the object desired to be sent cannot be stored in the filesystem of the

device. This should not be used when there is insufficient space on the storage. For

example, a FAT32 system can only support a 4GB object. A 6GB object would receive

Object_Too_Large.

Revision 1.1 April 6
th

, 2011 272

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

F.2.42 ObjectProp_Not_Supported

Response Code: 0xA80A

Indicates that an ObjectPropCode sent as a parameter of an operation appears to be a

valid code, but is not supported by the device. The initiator should only attempt to work

with Object Properties identified as supported by the responder, so this response should

not normally be returned.

F.2.43 Group_Not_Supported

Response Code: 0xA805

Indicates that an Object Property group code sent as a parameter of an operation appears

to be a valid code, but is not supported by the device. The initiator should only attempt to

work with Object Property group codes identified as supported by the responder, so this

response should not normally be returned.

Revision 1.1 April 6
th

, 2011 273

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix G – Events

G.1 Event Summary Table

MTP Name Event Datacode

Undefined 0x4000

CancelTransaction 0x4001

ObjectAdded 0x4002

ObjectRemoved 0x4003

StoreAdded 0x4004

StoreRemoved 0x4005

DevicePropChanged 0x4006

ObjectInfoChanged 0x4007

DeviceInfoChanged 0x4008

RequestObjectTransfer 0x4009

StoreFull 0x400A

DeviceReset 0x400B

StorageInfoChanged 0x400C

CaptureComplete 0x400D

UnreportedStatus 0x400E

ObjectPropChanged 0xC801

ObjectPropDescChanged 0xC802

ObjectReferencesChanged 0xC803

Revision 1.1 April 6
th

, 2011 274

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2 Event Descriptions

G.2.1 Undefined

Event Code: 0x4000

Parameter 1: None

Parameter 2: None

Parameter 3: None

This event code is undefined, and is not used.

G.2.2 CancelTransaction

Event Code: 0x4001

Parameter 1: None

Parameter 2: None

Parameter 3: None

This event is used to initiate the cancellation of a transaction.It is strongly recommended

to utilize USB cancelation functionality in preference to this protocol level cancelation.

When an Initiator or Responder receives this event, it shall cancel the transaction

identified by the TransactionID in the event dataset. If the transaction has already

completed, this event shall be ignored.

After receiving a CancelTransaction event from the initiator during an object transfer, the

responder shall send an Transaction_Cancelled response for the transfer which was in

progress.

G.2.3 ObjectAdded

Event Code: 0x4002

Parameter 1: ObjectHandle

Parameter 2: None

Parameter 3: None

This event indicates that a new data object has been added to the device. The first

parameter of this event shall contain the ObjectHandle assigned by the device to the new

object. If more than one object has been added, each new object shall generate its own

ObjectAdded event. This event shall not be issued by the appearance of a new store on

the device, which shall instead cause the generation of a StoreAdded event.

Revision 1.1 April 6
th

, 2011 275

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.4 ObjectRemoved

Event Code: 0x4003

Parameter 1: ObjectHandle

Parameter 2: None

Parameter 3: None

This event indicates that a data object has been removed from the device for reasons

external to the current session. The handle of the removed object shall be contained in the

first parameter of this event. If more than one object is removed, each removed object

shall generate its own ObjectRemoved event. If the data object was removed because of a

previous operation issued in the current session, no event shall be isued. This event shall

not be issued by the removal of a store from the device, which shall instead cause the

generation of one StoreRemoved event with the appropriate PhysicalStorageID.

G.2.5 StoreAdded

Event Code: 0x4004

Parameter 1: StorageID

Parameter 2: None

Parameter 3: None

This event indicates that a new store has been added to the device. If this is a new

physical store which contains only one logical store, then the complete StorageID of the

new store shall be contained in the first parameter. If the new store contains more than

one logical store, then the first parameter shall be set to 0x00000000 and the initiator

should retrieve a new list of StorageIDs using the GetStorageIDs operation. Any new

StorageIDs discovered should result in the appropriate invocations of GetStorageInfo

operations.

Revision 1.1 April 6
th

, 2011 276

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.6 StoreRemoved

Event Code: 0x4005

Parameter 1: StorageID

Parameter 2: None

Parameter 3: None

The indicated stores are no longer available. The opposing device may assume that the

StorageInfo datasets and ObjectHandles associated with those stores are no longer valid.

The first parameter is used to indicate the StorageID of the store that is no longer

available. If the store that has been removed is only a single logical store within a

physical store, the entire StorageID shall be sent, which indicates that any other logical

stores on that physical store are still available. If the physical store and all logical stores

upon it are removed (for example, removal of an ejectable media device that contains

multiple partitions), the first parameter shall contain the PhysicalStorageID in the most

significant sixteen bits, with the least significant sixteen bits set to 0xFFFF.

G.2.7 DevicePropChanged

Event Code: 0x4006

Parameter 1: DevicePropCode

Parameter 2: None

Parameter 3: None

A property changed on the device due to something external to this session. The

appropriate property dataset should be requested from the opposing Responder.

G.2.8 ObjectInfoChanged

Event Code: 0x4007

Parameter 1: ObjectHandle

Parameter 2: None

Parameter 3: None

This event indicates that the ObjectInfo dataset for a particular object has changed, and

that it should be requested again.

Revision 1.1 April 6
th

, 2011 277

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.9 DeviceInfoChanged

Event Code: 0x4008

Parameter 1: None

Parameter 2: None

Parameter 3: None

This event indicates that the capabilities of the Responder have changed, and that the

DeviceInfo should be requested again. This may be caused by the Responder going into

or out of a sleep state, or by the Responder losing or gaining some functionality.

G.2.10 RequestObjectTransfer

Event Code: 0x4009

Parameter 1: ObjectHandle

Parameter 2: None

Parameter 3: None

This event can be used by a responder to ask the initiator to initiate a GetObject operation

on the handle specified in the first parameter. This allows for push-mode to be enabled on

devices that intrinsically use pull mode.

G.2.11 StoreFull

Event Code: 0x400A

Parameter 1: StorageID

Parameter 2: None

Parameter 3: None

This event shall be sent when a store becomes full. Any multi-object capture that may be

occurring shall retain the objects that were written to a store before the store became full.

G.2.12 DeviceReset

Event Code: 0x400B

Parameter 1: None

Parameter 2: None

Parameter 3: None

This event only needs to be supported for devices that support multiple sessions or if the

device is capable of resetting itself automatically or manually through user intervention

while connected. This event shall be sent to all open sessions other than the session that

initiated the operation. This event shall be interpreted as indicating that the sessions are

about to be closed.

Revision 1.1 April 6
th

, 2011 278

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.13 StorageInfoChanged

Event Code: 0x400C

Parameter 1: StorageID

Parameter 2: None

Parameter 3: None

This event is used when information in the StorageInfo dataset for a store changes. This

can occur due to device properties changing, such as ImageSize, which can cause

changes in fields such as FreeSpaceInImages. This event is typically not needed if the

change is caused by an in-session operation that affects whole objects in a deterministic

manner. This includes changes in FreeSpaceInImages or FreeSpaceInBytes caused by

operations such as InitiateCapture or CopyObject, where the initiator can recognize the

changes due to the successful response code of the operation, and/or related, required

events.

G.2.14 CaptureComplete

Event Code: 0x400D

Parameter 1: TransactionID

Parameter 2: None

Parameter 3: None

This event is used to indicate that a capture session, previously initiated by the

InitiateCapture operation, is complete, and that no more ObjectAdded events will occur

as the result of this asynchronous operation. This operation is not used for

InitiateOpenCapture operations.

G.2.15 UnreportedStatus

Event Code: 0x400E

Parameter 1: None

Parameter 2: None

Parameter 3: None

When an initiator receives this event, it is responsible for doing whatever is necessary to

ensure that its knowledge of the responder is current. This may include re-obtaining

information such as individual datasets or ObjectHandle lists, or may even result in the

session being closed and re-opened.

Revision 1.1 April 6
th

, 2011 279

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

G.2.16 ObjectPropChanged

Event Code: 0xC801

Parameter 1: ObjectHandle

Parameter 2: ObjectPropCode

Parameter 3: None

This event is used to indicate that an object property value on the Responder has changed,

without that change being performed by the initiator. The parameters passed indicate

which property on which object has been updated.

G.2.17 ObjectPropDescChanged

Event Code: 0xC802

Parameter 1: ObjectPropCode

Parameter 2: ObjectFormatCode

Parameter 3: None

This event indicates that an object property description dataset has been updated,

indicating some change on the device. The parameters passed with this event identify the

ObjectPropDesc dataset which has changed.

G.2.18 ObjectReferencesChanged

Event Code: 0xC803

Parameter 1: ObjectHandle

Parameter 2: None

Parameter 3: None

This event is used to indicate that the references on an object have been updated. The

object handle in the first parameter identifies the object whose references have changed.

When objects are deleted by the Initiator and the Responder cleans up any references to

the now-deleted object, the Responder does not need to send this event for the resulting

reference updates.

Revision 1.1 April 6
th

, 2011 280

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Appendix H – USB Optimizations
Sending >4GB Binary Objects

As outlined in section 4.3 MTP Transactions, transactions in MTP take place in three

phases: Operation, Data and Response. The USB implementation defined by ISO 15740

requires that the data communicated in a given phase be contained in a container

structure, outlined in Appendix D of the ISO 15740. This generic container contains an

entire transfer phase; multiple containers cannot be combined. In PTP, any short packet

indicates the end of a particular phase (a NULL packet if ContainerLength divides the

USB Packet Size.)

USB Generic Container Dataset

Byte Offset Length (Bytes) Field Name Description

0 4 ContainerLength Total amount of data

to be sent (including

this header)

4 2 ContainerType Defines the type of

this container:

0x0000 Undefined

0x0001 Command

0x0002 Data

0x0003 Response

0x0004 Event

6 2 Code Operation, Response

or Event Code as

defined in the MTP

specification.

8 4 TransactionID See section 4.3.3

Transaction IDs.

12 ContainerLength-12 Payload The data which is to

be sent in this phase.

This container structure restricts the total size of the data transmitted in a phase to a size

able to be defined by a 4-byte field (approx 4GB). In order to send a larger data object

during a data phase, a value of 0xFFFFFFFF shall be contained in the ContainerLength

field. This may only be performed during a data phase; the restriction that the Command,

Response and Event phases cannot contain more than (2
32

-1) bytes remains.

Revision 1.1 April 6
th

, 2011 281

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Sending a >4GB Object with a SendObject Operation

In the likely scenario where the generic container represents the data phase of a

SendObject operation, the following additional restrictions apply:

It is the responsibility of the initiator to ensure that there is sufficient space on the

responder to contain the sent data object on the target storage; failure to do so will result

in the data transfer failing when the incoming object has overflowed the allocated storage

on the device.

It is the responsibility of the responder to first ensure that it has space for at least a 4GB

data object. If not, it shall respond appropriately. If the initiator specified a target storage

for the object being sent, the responder shall attempt to place it on that storage, and fail if

there is insufficient space on that storage with the appropriate response code. Then,

assuming that a file of at least 4Gb may be sent, it shall accept the object.

Retrieving a >4GB Object with a GetObject Operation

The other likely scenario for large data transfer is retrieving an object from a responder.

When retrieving an object, the size of the object to be retrieved shall be identified using

the ObjectCompressedSize Object Property, which is not limited to 32 bits. That size

shall be used to identify the size of the incoming data transfer, not including the size of

the generic container header. (Add 12 bytes to the value in the ObjectCompressedSize

object property to determine the value that would be placed in the ContainerLength field

if it were not limited to 32 bits.)

Splitting the Header and Data during the Data Phase

As outlined in section 4.3 MTP Transactions, transactions in MTP take place in three

phases: Operation, Data and Response. The USB implementation defined by ISO 15740

requires that the data communicated in a given phase be contained in a container

structure, outlined in Appendix D of the ISO 15740, and also reproduced in the previous

section. This generic container contains an entire transfer phase; multiple containers

cannot be combined. In PTP, any short packet indicates the end of a particular phase (a

NULL packet if ContainerLength divides the USB Packet Size).

This artificial header presents a difficulty for devices that wish to write an incoming

datastream directly to the device, or that wish to pipe data directly to an outgoing

datastream.

An MTP responder may overcome this by separating the header from the payload and

sending/receiving it in a short packet preceding the payload. Devices that choose to do

this must always manage these packets consistently. That is, all data phases (all USB data

transfers where the ContainerType = 0x0002) must have a single packet containing 12

bytes, which has only the header which is followed by the payload beginning with a new

packet. This applies both to data sent to the device and retrieved from the device.

Revision 1.1 April 6
th

, 2011 282

USB Media Transfer Protocol Specification

Copyright © 2011, USB Implementers Forum

All Rights Reserved

Operations, Responses and Events remain unchanged, and shall never have their generic

container header split from the payload.

If an MTP responder implementation chooses to take advantage of this option, it does not

need to indicate this directly in any way. Rather, it is the responsibility of the MTP

initiator to determine whether the MTP device is separating the header from the payload,

based upon observed behavior. The suggested method is to use a known required

operation (such as GetDeviceInfo) which has a data phase containing known data, and

based upon the format of the structure returned in the data phase, determine how to

handle future data phases.

If the data payload transferred in a data phase of an operation is empty, that is, there is no

data but a data phase is defined, then the data phase consists of a single generic container

header (which identifies the total amount of data to be 12 bytes: the size of the generic

container header), and it shall not be followed by a Zero-Length Packet packet (unless the

container itself is a multiple of wMaxPacketSize for the endpoint).

